Synthesis and order-disorder transition in a novel metal formate framework of [(CH₃)₂NH₂]Na(0.5)Fe(0.5)(HCOO)₃].

We report the synthesis, crystal structure, thermal, dielectric, Raman, infrared, and magnetic properties of [(CH3)2NH2][Na(0.5)Fe(0.5)(HCOO)3] (DMNaFe), the first metal formate framework templated by organic cations, presenting an ABO3 perovskite architecture with NaO6 octahedra as building blocks of the framework. On the basis of Raman and IR data, assignment of the observed modes to respective vibrations of atoms is proposed. We have found that DMNaFe undergoes a structural phase transition at 167 K on cooling. According to the X-ray diffraction, the compound shows R3[combining macron] symmetry at 293 K and triclinic P1[combining macron] symmetry at 110 K. The DMA(+) cations are dynamically disordered in the high-temperature phase and the phase transition is associated with ordering of the DMA(+) cations and distortion of the metal formate framework. The dielectric studies reveal pronounced dielectric dispersion that can be attributed to slow dynamics of the DMA(+) cations. Based on the low-temperature magnetic studies, this compound is a weak ferromagnet with a critical temperature 8.5 K.

[1]  M. Ma̧czka,et al.  Vibrational properties and DFT calculations of the perovskite metal formate framework of [(CH3)2NH2][Ni(HCOO3)] system. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[2]  M. Ma̧czka,et al.  Perovskite metal formate framework of [NH2-CH(+)-NH2]Mn(HCOO)3]: phase transition, magnetic, dielectric, and phonon properties. , 2014, Inorganic chemistry.

[3]  A. Llamas-Saiz,et al.  First-order structural transition in the multiferroic perovskite-like formate [(CH3)2NH2][Mn(HCOO)3] , 2014, 1405.1527.

[4]  M. Ma̧czka,et al.  Infrared and Raman studies of phase transitions in metal–organic frameworks of [(CH3)2NH2][M(HCOO)3] with M=Zn, Fe , 2014 .

[5]  Song Gao,et al.  [NH2NH3][M(HCOO)3] (M = Mn2+, Zn2+, Co2+ and Mg2+): structural phase transitions, prominent dielectric anomalies and negative thermal expansion, and magnetic ordering , 2014 .

[6]  Song Gao,et al.  Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks. , 2014, Chemistry.

[7]  M. Ma̧czka,et al.  Order-disorder transition and weak ferromagnetism in the perovskite metal formate frameworks of [(CH3)2NH2][M(HCOO)3] and [(CH3)2ND2][M(HCOO)3] (M = Ni, Mn). , 2014, Inorganic chemistry.

[8]  M. Ma̧czka,et al.  Structure, phonon properties, and order-disorder transition in the metal formate framework of [NH4][Mg(HCOO)3]. , 2014, Inorganic chemistry.

[9]  P. Jain,et al.  Tuning the ferroelectric polarization in a multiferroic metal-organic framework. , 2013, Journal of the American Chemical Society.

[10]  B. Pato-Doldán,et al.  Coexistence of magnetic and electrical order in the new perovskite-like (C3N2H5)[Mn(HCOO)3] formate , 2013 .

[11]  P. Jain,et al.  Ferroelasticity in a metal–organic framework perovskite; towards a new class of multiferroics , 2013 .

[12]  Young Sun,et al.  Magnetoelectric coupling in the paramagnetic state of a metal-organic framework , 2013, Scientific Reports.

[13]  T. Asaji,et al.  Phase Transition and Cationic Motion in a Metal–Organic Perovskite, Dimethylammonium Zinc Formate [(CH3)2NH2][Zn(HCOO)3] , 2013 .

[14]  A. Stroppa,et al.  Hybrid Improper Ferroelectricity in a Multiferroic and Magnetoelectric Metal‐Organic Framework , 2013, Advanced materials.

[15]  A. Stroppa Polar and Magneto-Electric Properties of Anti-Ferrodistortive Ordered Jahn-Teller Distortions in a multiferroic metal-organic framework , 2013 .

[16]  Zhe-Ming Wang,et al.  Freezing of ring-puckering molecular motion and giant dielectric anomalies in metal-organic perovskites. , 2012, Chemistry, an Asian journal.

[17]  J. Rodríguez-Carvajal,et al.  The role of order-disorder transitions in the quest for molecular multiferroics: structural and magnetic neutron studies of a mixed valence iron(II)-iron(III) formate framework. , 2012, Journal of the American Chemical Society.

[18]  P. Mandal,et al.  Weak ferromagnetism and magnetization reversal in YFe1−xCrxO3 , 2012, 1510.07548.

[19]  M. Peruzzini,et al.  Amine-templated polymeric Mg formates: crystalline scaffolds exhibiting extensive hydrogen bonding , 2012 .

[20]  R. Xiong,et al.  Ferroelectric metal-organic frameworks. , 2012, Chemical reviews.

[21]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[22]  Takayoshi Nakamura,et al.  A multiferroic perdeutero metal-organic framework. , 2011, Angewandte Chemie.

[23]  Zhe-Ming Wang,et al.  Giant dielectric anomaly of a metal-organic perovskite with four-membered ring ammonium cations. , 2011, Angewandte Chemie.

[24]  Song Gao,et al.  Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3]. , 2011, Journal of the American Chemical Society.

[25]  P. Jain,et al.  Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal-organic framework. , 2011, Angewandte Chemie.

[26]  Yang Wang,et al.  Temperature- and magnetic-field-induced magnetization reversal in perovskite YFe0.5Cr0.5O3 , 2011 .

[27]  B. Maté,et al.  Formate ion: structure and spectroscopic properties. , 2011, The journal of physical chemistry. A.

[28]  R. Xiong,et al.  Ferroelectric metal organic framework (MOF) , 2010 .

[29]  X. Bu,et al.  Magnetic behavior control in niccolite structural metal formate frameworks [NH2(CH3)2][Fe(III)M(II)(HCOO)6] (M = Fe, Mn, and Co) by varying the divalent metal ions. , 2010, Inorganic chemistry.

[30]  G. Rogez,et al.  Multiferroic materials: the attractive approach of metal-organic frameworks (MOFs). , 2010, Angewandte Chemie.

[31]  M. A. Señarís-Rodríguez,et al.  Characterization of the order-disorder dielectric transition in the hybrid organic-inorganic perovskite-like formate Mn(HCOO)(3)[(CH(3))(2)NH(2)]. , 2010, Inorganic chemistry.

[32]  Jie Su,et al.  New double formates Na3M(HCOO)6 (M = Ga, In) with diamond-like metal framework: Synthesis, structure and coordination modes , 2009 .

[33]  Song Gao,et al.  Metal-organic perovskites: synthesis, structures, and magnetic properties of [C(NH2)3][M(II)(HCOO)3] (M = Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3 = guanidinium). , 2009, Chemistry.

[34]  P. Jain,et al.  Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. , 2009, Journal of the American Chemical Society.

[35]  G. Christou,et al.  Intensely colored mixed-valence iron(II) iron(III) formate analogue of Prussian Blue exhibits néel N-type ferrimagnetism. , 2009, Journal of the American Chemical Society.

[36]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[37]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[38]  M. Caporali,et al.  Phase Transitions and CO2 Adsorption Properties of Polymeric Magnesium Formate , 2008 .

[39]  P. Jain,et al.  Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. , 2008, Journal of the American Chemical Society.

[40]  M. Ma̧czka,et al.  Polarized IR, spontaneous and stimulated Raman spectra of Y(HCOO)3·2H2O single crystal — a new Raman laser material , 2006 .

[41]  Bin Zhang,et al.  Anionic NaCl-type frameworks of [Mn(II)(HCOO)(3)(-)], templated by alkylammonium, exhibit weak ferromagnetism. , 2004, Dalton transactions.

[42]  Song Gao,et al.  Perovskite-like Metal Formates with Weak Ferromagnetism and as Precursors to Amorphous Materials. , 2004, Inorganic chemistry.

[43]  T. Uchimoto,et al.  Magnetization reversal in weak ferrimagnets and canted antiferromagnets , 2003 .

[44]  M. Ramos,et al.  Prediction of the Raman spectrum of the aqueous formate anion by a combined density functional theory and self-consistent-reaction-field study , 2000 .

[45]  K. Abe,et al.  Line Shape of the Raman Spectrum and the Disorder Mechanism of the Methylammonium Group in a [(CH 3) 2NH 2] 5Cd 3Cl 11 Crystal , 1996 .

[46]  R. E. Marsh On the structure of Zn(C4H8N2O6) , 1986 .

[47]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[48]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.