The Merge Phase of Parallel Divide-and-Conquer Scheme for 3D Delaunay Triangulation

In parallel generation of 3D Delaunay triangulation, the merge phase is the main part that affects the parallel efficiency. In this work, the geometric properties of the merging triangulation between two Delaunay triangulations were identified. Several Delaunay triangulations of random point sets were used to generate merging triangulation two by two. From the experimental results, the generated interface triangulation are all point free which satisfy the criterion of Delaunay triangulation.

[1]  Anthony Skjellum,et al.  Portable Parallel Programming with the Message-Passing Interface , 1996 .

[2]  Nikos Chrisochoides,et al.  Parallel Delaunay mesh generation kernel , 2003 .

[3]  Christopher J. Van Wyk,et al.  Efficient exact arithmetic for computational geometry , 1993, SCG '93.

[4]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[5]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[6]  Tyng-Ruey Chuang,et al.  Efficient parallel implementations of near Delaunay triangulation with High Performance Fortran , 2004, Concurr. Pract. Exp..

[7]  Guy E. Blelloch,et al.  Design and Implementation of a Practical Parallel Delaunay Algorithm , 1999, Algorithmica.

[8]  P Cignoni,et al.  DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed , 1998, Comput. Aided Des..

[9]  Robert L. Scot Drysdale,et al.  A comparison of sequential Delaunay triangulation algorithms , 1995, SCG '95.

[10]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[11]  Nigel P. Weatherill,et al.  Distributed parallel Delaunay mesh generation , 1999 .

[12]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[13]  Rex A. Dwyer A faster divide-and-conquer algorithm for constructing delaunay triangulations , 1987, Algorithmica.

[14]  Jirí Zára,et al.  Parallel Delaunay triangulation in E2 and E3 for computers with shared memory , 2005, Parallel Comput..

[15]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[16]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[17]  Tyng-Ruey Chuang,et al.  Parallel divide‐and‐conquer scheme for 2D Delaunay triangulation , 2006, Concurr. Comput. Pract. Exp..

[18]  C. A. R. Hoare,et al.  Algorithm 64: Quicksort , 1961, Commun. ACM.