The Evolution of Time Preference with Aggregate Uncertainty

We examine the evolutionary foundations of intertemporal preferences. When all the risk affecting survival and reproduction is idiosyncratic, evolution selects for agents who maximize the discounted sum of expected utility, discounting at the sum of the population growth rate and the mortality rate. Aggregate uncertainty concerning survival rates leads to discount rates that exceed the sum of population growth rate and death rate, and can push agents away from exponential discounting. (JEL D11, D81, D91)

[1]  Nabil I. Al-Najjar Decomposition and Characterization of Risk with a Continuum of Random Variables , 1995 .

[2]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[3]  William D. Nordhaus,et al.  A Review of the Stern Review on the Economics of Climate Change , 2007 .

[4]  Shripad Tuljapurkar,et al.  Population Dynamics in Variable Environments , 1990 .

[5]  Sexual Reproduction and Time-Inconsistent Preferences , 2007 .

[6]  M. Yaari,et al.  Uncertain lifetime, life insurance, and the theory of the consumer , 1965 .

[7]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[8]  Morten I. Lau,et al.  Eliciting Risk and Time Preferences , 2008 .

[9]  W. S. Cooper,et al.  Adaptive "coin-flipping": a decision-theoretic examination of natural selection for random individual variation. , 1982, Journal of theoretical biology.

[10]  L. Samuelson,et al.  The Evolution of Intertemporal Preferences , 2007 .

[11]  E. Maskin,et al.  Uncertainty and Hyperbolic Discounting , 2005 .

[12]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[13]  Balázs Szentes,et al.  Evolution of time preference by natural selection , 2009 .

[14]  Philip A. Curry Decision Making under Uncertainty and the Evolution of Interdependent Preferences , 2001, J. Econ. Theory.

[15]  T. Bergstrom Storage for Good Times and Bad: Of Rats and Men , 1997 .

[16]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[17]  K. McSweeney,et al.  A "Demographic Turnaround": The Rapid Growth of the Indigenous Populations in Lowland Latin America , 2005 .

[18]  M Daly,et al.  What happens when the private sector plans hospital services for the NHS: three case studies under the private finance initiative , 1997, BMJ.

[19]  A. Lo,et al.  The Origin of Behavior , 2009 .

[20]  B. Lautrup,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  An Evolutionary Approach Towards Time Preferences ∗ , 2006 .

[22]  M. Gurven,et al.  Longevity Among Hunter‐ Gatherers: A Cross‐Cultural Examination , 2007 .

[23]  I. Fisher Die Zinstheorie = the theory of interest : as determined by impatience to spend income and opportunity to invest it , 1930 .

[24]  Charles Stuart,et al.  Malthusian Selection of Preferences , 1990 .

[25]  D. Bishai Does time preference change with age? , 2004 .

[26]  R. Litzenberger,et al.  Estimates of the Marginal Rate of Time Preference and Average Risk Aversion of Investors in Electric Utility Shares: 1960-66 , 1971 .

[27]  M. Weitzman,et al.  Stern Review : The Economics of Climate Change , 2006 .

[28]  George Tsebelis,et al.  The Origins of Presidential Conditional Agenda-Setting Power in Latin America , 2005 .

[29]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[30]  Shanefrederick,et al.  Time Discounting and Time Preference : A Critical Review , 2022 .

[31]  R. Thaler Some empirical evidence on dynamic inconsistency , 1981 .

[32]  Emily C Lawrance Poverty and the Rate of Time Preference: Evidence from Panel Data , 1991, Journal of Political Economy.

[33]  Arthur J. Robson,et al.  A Biological Basis for Expected and Non-expected Utility , 1996 .

[34]  P. H. Leslie On the use of matrices in certain population mathematics. , 1945, Biometrika.

[35]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[36]  Arthur J. Robson,et al.  The Evolutionary Foundations of Preferences , 2011 .

[37]  A. Houston,et al.  Models of adaptive behaviour , 1999 .

[38]  Peter D. Sozou,et al.  On hyperbolic discounting and uncertain hazard rates , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[40]  E. E. Dyakonova,et al.  Multitype branching processes in random environment , 2002, Russian Mathematical Surveys.

[41]  D. Ruelle,et al.  Analycity properties of the characteristic exponents of random matrix products , 1979 .

[42]  Balázs Szentes,et al.  Evolution of time preference by natural selection: comment , 2008 .

[43]  B. Charlesworth,et al.  Evolution in Age-Structured Populations. , 1995 .

[44]  P. Slovic Perception of risk. , 1987, Science.

[45]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[46]  J. Gillespie Polymorphism in random environments , 1973 .

[47]  Robert Slonim,et al.  Patience among children , 2007 .

[48]  Baruch Fischhoff,et al.  Why Study Risk Perception , 1982 .