Localized approximation for gaussian beams in elliptical cylinder coordinates.

We establish a localized approximation to evaluate the beam-shape coefficients of a Gaussian beam in elliptical cylinder coordinates. As for the case of spherical coordinates and of circular cylinder coordinates, this approximation provides an efficient way to speed up computations within the framework of a generalized Lorenz-Mie theory for elliptical cylinders.

[1]  On the generalized Lorenz-Mie theory: first attempt to design a localized approximation to the computation of the coefficients gnm , 1989 .

[2]  G. Gouesbet,et al.  Ray localization in gaussian beams , 1989 .

[3]  Gérard Gouesbet,et al.  Higher-order descriptions of Gaussian beams , 1996 .

[4]  F. Borgnis Elektromagnetische Eingenschwingungen dielektrischer Räume , 1939 .

[5]  M. Riethmuller,et al.  Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity. , 1996, Applied optics.

[6]  Gérard Gréhan,et al.  Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation , 1988 .

[7]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[8]  J. Lock,et al.  Partial-wave representations of laser beams for use in light-scattering calculations. , 1995, Applied optics.

[9]  T. A. Bromwich X. Electromagnetic waves , 1919 .

[10]  Gérard Gréhan,et al.  Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory , 1990 .

[11]  J. Lock Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder , 1997 .

[12]  G. Gouesbet,et al.  Evaluation of laser-sheet beam shape coefficients in generalized Lorenz–Mie theory by use of a localized approximation , 1994 .

[13]  L. W. Davis,et al.  Theory of electromagnetic beams , 1979 .

[14]  G. Gouesbet,et al.  Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results , 1997 .

[15]  G. Gouesbet,et al.  The separability ‘‘theorem’’ in terms of distributions with discussion of electromagnetic scattering theory , 1996 .

[16]  G. Gouesbet Interaction between an infinite cylinder and an arbitrary-shaped beam. , 1997, Applied optics.

[17]  Partial-wave expansions of higher-order Gaussian beams in elliptical cylindrical coordinates , 1999 .

[18]  G. Gouesbet Scattering of higher-order Gaussian beams by an infinite cylinderDiffusion de faisceaux gaussiens d' , 1997 .

[19]  C. Yeh,et al.  The Diffraction of Waves By a Penetrable Ribbon , 1963 .

[20]  Gérard Gouesbet,et al.  Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams , 1994 .

[21]  G Gouesbet,et al.  Generalized Lorenz-Mie theory: first exact values and comparisons with the localized approximation. , 1987, Applied optics.

[22]  G. Gréhan,et al.  Partial-wave description of shaped beams in elliptical-cylinder coordinates , 1998 .

[23]  G Gouesbet,et al.  Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation. , 1986, Applied optics.

[24]  G. Gréhan,et al.  Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. , 1995, Applied optics.

[25]  G. Gouesbet,et al.  Rigorous justification of the cylindrical localized approximation to speed up computations in the generalized Lorenz–Mie theory for cylinders , 1998 .

[26]  C. Yeh Backscattering Cross Section of a Dielectric Elliptical Cylinder , 1965 .

[27]  J. P. Barton,et al.  Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam , 1989 .

[28]  Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach , 1999 .

[29]  G. Gouesbet,et al.  Characterization of initial disturbances in a liquid jet by rainbow sizing. , 1998, Applied optics.

[30]  H. Mignon,et al.  Measurement of cylindrical particles with phase Doppler anemometry. , 1996, Applied optics.

[31]  J. Lock Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle , 1993 .