An Evolving and Mass-dependent σsSFR–M⋆ Relation for Galaxies

The scatter (σsSFR) of the specific star formation rates of galaxies is a measure of the diversity in their star formation histories (SFHs) at a given mass. In this paper, we employ the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations to study the dependence of the σsSFR of galaxies on stellar mass (M⋆) through the σsSFR–M⋆ relation in z ∼ 0–4. We find that the relation evolves with time, with the dispersion depending on both stellar mass and redshift. The models point to an evolving U-shaped form for the σsSFR–M⋆ relation, with the scatter being minimal at a characteristic mass M⋆ of 109.5 M⊙ and increasing both at lower and higher masses. This implies that the diversity of SFHs increases toward both the low- and high-mass ends. We find that feedback from active galactic nuclei is important for increasing the σsSFR for high-mass objects. On the other hand, we suggest that feedback from supernovae increases the σsSFR of galaxies at the low-mass end. We also find that excluding galaxies that have experienced recent mergers does not significantly affect the σsSFR–M⋆ relation. Furthermore, we employ the EAGLE simulations in combination with the radiative transfer code SKIRT to evaluate the effect of SFR/stellar mass diagnostics in the σsSFR–M⋆ relation, and find that the SFR/M⋆ methodologies (e.g., SED fitting, UV+IR, UV+IRX–β) widely used in the literature to obtain intrinsic properties of galaxies have a large effect on the derived shape and normalization of the σsSFR–M⋆ relation.

[1]  G. Blanc,et al.  A Characteristic Mass Scale in the Mass–Metallicity Relation of Galaxies , 2019, The Astrophysical Journal.

[2]  L. Dessart,et al.  The surface abundances of red supergiants at core collapse , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  A. Robotham,et al.  Shark: introducing an open source, free, and flexible semi-analytic model of galaxy formation , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  O. I. Wong,et al.  Ring galaxies in the EAGLE hydrodynamical simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[5]  C. Pichon,et al.  Introducing a new, robust galaxy-finder algorithm for simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  J. Brinchmann,et al.  The MUSE Hubble Ultra Deep Field Survey , 2018, Astronomy & Astrophysics.

[7]  J. Schaye,et al.  The origin of scatter in the star formation rate–stellar mass relation , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  V. Wild,et al.  The VANDELS ESO public spectroscopic survey , 2018, 1803.07414.

[9]  A. Pallottini,et al.  Dusty galaxies in the Epoch of Reionization: simulations , 2018, 1802.07772.

[10]  Pisa,et al.  Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift , 2018, 1802.03879.

[11]  J. Schaye,et al.  Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project , 2017, 1712.05583.

[12]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[13]  B. Garilli,et al.  The VANDELS survey: dust attenuation in star-forming galaxies at z=3-4 , 2017, 1712.01292.

[14]  M. D’Onofrio,et al.  Cosmic Star Formation: A Simple Model of the SFRD(z) , 2017, 1711.03416.

[15]  M. Cluver,et al.  Calibrating Star Formation in WISE Using Total Infrared Luminosity , 2017, 1710.03469.

[16]  S. Maddox,et al.  The new galaxy evolution paradigm revealed by the Herschel surveys , 2017, 1710.01314.

[17]  J. Dunlop,et al.  Dust attenuation in 2, 2017, 1709.06102.

[18]  Benjamin D. Johnson,et al.  Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties , 2017, 1709.04469.

[19]  L. Kewley,et al.  The SAMI Galaxy Survey : understanding observations of large-scale outflows at low redshift with EAGLE simulations. , 2017, 1709.01939.

[20]  D. Asmus,et al.  Dissecting the active galactic nucleus in Circinus, I : peculiar mid-IR morphology explained by a dusty hollow cone , 2017, 1708.07838.

[21]  G. Blanc,et al.  The evolution of the star formation rate function in the EAGLE simulations : a comparison with UV, IR and Hα observations from z ∼ 8 to z ∼ 0. , 2017, 1708.01913.

[22]  Carnegie,et al.  Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei , 2017, 1707.03832.

[23]  A. Fontana,et al.  The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields , 2017, 1706.07059.

[24]  Daming Chen,et al.  Baryon effects on the dark matter haloes constrained from strong gravitational lensing , 2017, 1706.03324.

[25]  The University of Melbourne,et al.  Simulated metal and H i absorption lines at the conclusion of reionization , 2017, 1706.01072.

[26]  D. Elbaz,et al.  The SFR-M ∗ main sequence archetypal star-formation history and analytical models , 2017, 1706.08531.

[27]  C. Frenk,et al.  Optical colours and spectral indices of z = 0.1 eagle galaxies with the 3D dust radiative transfer code skirt , 2017, 1705.02331.

[28]  A. Coil,et al.  X-rays across the galaxy population - II. The distribution of AGN accretion rates as a function of stellar mass and redshift , 2017, 1705.01132.

[29]  D. Elbaz,et al.  Molecular gas, dust, and star formation in galaxies: I. Dust properties and scalings in ~ 1600 nearby galaxies , 2017, 1703.09829.

[30]  Annalisa Pillepich,et al.  Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.

[31]  E. Observatory,et al.  Polarization in Monte Carlo radiative transfer and dust scattering polarization signatures of spiral galaxies , 2017, 1702.07354.

[32]  E. Gawiser,et al.  Reconstruction of Galaxy Star Formation Histories through SED Fitting:The Dense Basis Approach , 2017, 1702.04371.

[33]  S. Ravindranath,et al.  Physical Properties of Sub-galactic Clumps at 0.5 ≤ Z ≤ 1.5 in the UVUDF , 2017, 1702.03038.

[34]  J. Cooke,et al.  Superluminous Supernovae at High Redshift , 2017, Publications of the Astronomical Society of Australia.

[35]  A. Hopkins,et al.  Galaxy And Mass Assembly: the 1.4 GHz SFR indicator, SFR–M∗ relation and predictions for ASKAP–GAMA , 2017 .

[36]  C. Faucher-Giguère A Model for the Origin of Bursty Star Formation in Galaxies , 2017, 1701.04824.

[37]  Timothy A. Davis,et al.  Quantifying the impact of mergers on the angular momentum of simulated galaxies , 2017, 1701.04407.

[38]  R. Bower,et al.  The link between galaxy and black hole growth in the eagle simulation. , 2017, 1701.01122.

[39]  G. Bryan,et al.  Implications of Galaxy Buildup for Putative IMF Variations in Massive Galaxies , 2016, 1612.05658.

[40]  G. Blanc,et al.  The evolution of the star formation rate function and cosmic star formation rate density of galaxies at z ∼ 1–4 , 2016, 1610.03441.

[41]  S. White,et al.  A chronicle of galaxy mass assembly in the EAGLE simulation , 2016, 1609.07243.

[42]  T. Davis,et al.  Angular momentum evolution of galaxies in EAGLE , 2016, 1609.01739.

[43]  Liverpool John Moores University,et al.  The dark nemesis of galaxy formation : why hot haloes trigger black hole growth and bring star formation to an end , 2016, 1607.07445.

[44]  J. Schaye,et al.  Far-infrared and dust properties of present-day galaxies in the EAGLE simulations , 2016, 1607.04402.

[45]  V. Springel,et al.  Simulating galaxy formation with black hole driven thermal and kinetic feedback , 2016, 1607.03486.

[46]  A. Hopkins,et al.  GAMA/H-ATLAS: a meta-analysis of SFR indicators – comprehensive measures of the SFR–M* relation and cosmic star formation history at z < 0.4 , 2016, 1606.06299.

[47]  S. Andrews,et al.  MEASUREMENTS OF EXTRAGALACTIC BACKGROUND LIGHT FROM THE FAR UV TO THE FAR IR FROM DEEP GROUND- AND SPACE-BASED GALAXY COUNTS , 2016, 1605.01523.

[48]  R. Bower,et al.  The EAGLE simulations: atomic hydrogen associated with galaxies , 2016, 1604.06803.

[49]  C. Frenk,et al.  Supermassive black holes in the EAGLE Universe : revealing the observables of their growth. , 2016, 1604.00020.

[50]  H. Rix,et al.  AGES OF MASSIVE GALAXIES AT 0.5 > z > 2.0 FROM 3D-HST REST-FRAME OPTICAL SPECTROSCOPY , 2016, 1603.02689.

[51]  R. Bender,et al.  Sizes, colour gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at z = 1.39 , 2016, 1603.00468.

[52]  P. Lira,et al.  The dust covering factor in active galactic nuclei , 2016, 1602.06954.

[53]  D. Koo,et al.  EVOLUTION OF INTRINSIC SCATTER IN THE SFR–STELLAR MASS CORRELATION AT 0.5 < z < 3 , 2016, 1602.03909.

[54]  L. Galbany,et al.  SPATIALLY RESOLVED STAR FORMATION MAIN SEQUENCE OF GALAXIES IN THE CALIFA SURVEY , 2016, 1602.02770.

[55]  Caltech,et al.  An instability of feedback regulated star formation in galactic nuclei , 2016, 1601.07186.

[56]  J. Helly,et al.  Size evolution of normal and compact galaxies in the EAGLE simulation , 2015, 1510.05645.

[57]  R. Bower,et al.  The EAGLE simulations of galaxy formation: the importance of the hydrodynamics scheme , 2015, 1509.05056.

[58]  M. Radovich,et al.  Supernova rates from the SUDARE VST-Omegacam search. I , 2015, 1509.04496.

[59]  J. A. Vázquez-Mata,et al.  Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV–far-IR) and the low-z energy budget , 2015, 1508.02076.

[60]  J. Wyithe,et al.  The Relation between Star-Formation Rate and Stellar Mass of Galaxies at z ~ 1–4 , 2015, Publications of the Astronomical Society of Australia.

[61]  H. Fu,et al.  THE STAR FORMATION MAIN SEQUENCE: THE DEPENDENCE OF SPECIFIC STAR FORMATION RATE AND ITS DISPERSION ON GALAXY STELLAR MASS , 2015, 1507.03585.

[62]  H. Rix,et al.  STELLAR MASSES AND STAR FORMATION RATES FOR 1 M GALAXIES FROM SDSS+WISE , 2015, 1506.00648.

[63]  Durham,et al.  Colours and luminosities of z = 0.1 galaxies in the eagle simulation , 2015, 1504.04374.

[64]  C. Frenk,et al.  Molecular hydrogen abundances of galaxies in the EAGLE simulations , 2015, 1503.04807.

[65]  Sugata Kaviraj,et al.  Galaxy Zoo: the dependence of the star formation–stellar mass relation on spiral disc morphology , 2015, 1502.03444.

[66]  A. Renzini,et al.  AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES , 2015, 1502.01027.

[67]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[68]  O. Fèvre,et al.  Evolution of the specific star formation rate function at z< 1.4 Dissecting the mass-SFR plane in COSMOS and GOODS , 2014, 1410.4875.

[69]  C. Frenk,et al.  Evolution of galaxy stellar masses and star formation rates in the eagle simulations , 2014, 1410.3485.

[70]  A. Zirm,et al.  RESOLVING THE DISCREPANCY OF GALAXY MERGER FRACTION MEASUREMENTS AT z ∼ 0–3 , 2014, 1410.3479.

[71]  Maarten Baes,et al.  SKIRT: An advanced dust radiative transfer code with a user-friendly architecture , 2014, Astron. Comput..

[72]  M. Boquien,et al.  Impact of star formation history on the measurement of star formation rates , 2014, 1409.5792.

[73]  D. Elbaz,et al.  The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day , 2014, 1409.5433.

[74]  V. Springel,et al.  The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation , 2014, 1409.0009.

[75]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): galaxy close pairs, mergers and the future fate of stellar mass , 2014, 1408.1476.

[76]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[77]  R. Wechsler,et al.  THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.

[78]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[79]  S. Wuyts,et al.  The total infrared luminosity may significantly overestimate the star formation rate of quenching and recently quenched galaxies , 2014, 1402.0006.

[80]  C. Conroy,et al.  SIMULTANEOUS MODELING OF THE STELLAR AND DUST EMISSION IN DISTANT GALAXIES: IMPLICATIONS FOR STAR FORMATION RATE MEASUREMENTS , 2014, 1401.5472.

[81]  E. Tescari,et al.  The stellar mass function and star formation rate-stellar mass relation of galaxies at z ~ 4 - 7 , 2013, 1312.4964.

[82]  M. Viel,et al.  Simulated star formation rate functions at z ∼ 4-7, and the role of feedback in high-z galaxies , 2013, 1312.5310.

[83]  S. Cole,et al.  N-body dark matter haloes with simple hierarchical histories , 2013, 1311.6649.

[84]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[85]  O. Ilbert,et al.  HerMES: dust attenuation and star formation activity in ultraviolet-selected samples from z ∼ 4 to ∼ 1.5 , 2013, 1310.3227.

[86]  J. Kneib,et al.  Star formation histories, extinction, and dust properties of strongly lensed z ~ 1.5-3 star-forming galaxies from the Herschel Lensing Survey. , 2013, 1310.2655.

[87]  H. Fu,et al.  THE INTRINSIC SCATTER ALONG THE MAIN SEQUENCE OF STAR-FORMING GALAXIES AT z ∼ 0.7 , 2013, 1309.4093.

[88]  Bruno Milliard,et al.  Encoding of the infrared excess in the NUVrK color diagram for star-forming galaxies , 2013, 1309.0008.

[89]  H. Rix,et al.  HOW DEAD ARE DEAD GALAXIES? MID-INFRARED FLUXES OF QUIESCENT GALAXIES AT REDSHIFT 0.3 < z < 2.5: IMPLICATIONS FOR STAR FORMATION RATES AND DUST HEATING , 2013, 1308.4132.

[90]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): Linking Star Formation Histories and Stellar Mass Growth , 2013, 1306.2424.

[91]  C. Baugh,et al.  How well can we really estimate the stellar masses of galaxies from broad-band photometry? , 2013, 1303.7228.

[92]  R. Bender,et al.  PHOTOMETRIC REDSHIFTS AND SYSTEMATIC VARIATIONS IN THE SPECTRAL ENERGY DISTRIBUTIONS OF LUMINOUS RED GALAXIES FROM SDSS DR7 , 2013, 1303.3005.

[93]  I. Smail,et al.  The merger rates and sizes of galaxies across the peak epoch of star formation from the HiZELS survey , 2012, 1212.4834.

[94]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[95]  M. Baes,et al.  Gravitational microlensing of active galactic nuclei dusty tori , 2012, 1207.0548.

[96]  R. Bouwens,et al.  SLOW EVOLUTION OF THE SPECIFIC STAR FORMATION RATE AT z > 2: THE IMPACT OF DUST, EMISSION LINES, AND A RISING STAR FORMATION HISTORY , 2012, 1208.4362.

[97]  D. Schaerer,et al.  Properties of z ~ 3–6 Lyman break galaxies - II. Impact of nebular emission at high redshift , 2012, 1207.3663.

[98]  G. Brammer,et al.  THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.

[99]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[100]  J. Schaye,et al.  Simulating galactic outflows with thermal supernova feedback , 2012, 1203.5667.

[101]  K. Schawinski,et al.  The dominant role of mergers in the size evolution of massive early-type galaxies sincez ~  1 , 2012, Astronomy &amp; Astrophysics.

[102]  Carlos Hoyos,et al.  THE STRUCTURES AND TOTAL (MINOR + MAJOR) MERGER HISTORIES OF MASSIVE GALAXIES UP TO z ∼ 3 IN THE HST GOODS NICMOS SURVEY: A POSSIBLE SOLUTION TO THE SIZE EVOLUTION PROBLEM , 2011, 1111.5662.

[103]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[104]  J. C. Lee,et al.  A comparison between star formation rate diagnostics and rate of core collapse supernovae within 11 Mpc , 2011, 1111.1692.

[105]  R. Bouwens,et al.  THE REST-FRAME UV-TO-OPTICAL COLORS AND SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 4–7 GALAXIES , 2011, 1110.6441.

[106]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[107]  Harvard,et al.  The stellar masses and specific star-formation rates of submillimetre galaxies , 2011, 1108.6058.

[108]  M. Baes,et al.  EFFICIENT THREE-DIMENSIONAL NLTE DUST RADIATIVE TRANSFER WITH SKIRT , 2011, 1108.5056.

[109]  Marijn Franx,et al.  THE DIMINISHING IMPORTANCE OF MAJOR GALAXY MERGERS AT HIGHER REDSHIFTS , 2011, 1106.6054.

[110]  C. Conselice,et al.  Star formation in a stellar mass-selected sample of galaxies to z= 3 from the GOODS-NICMOS Survey , 2011, 1106.2656.

[111]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[112]  T. Ichikawa,et al.  MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z ∼ 3 , 2010, 1009.0002.

[113]  A. Cimatti,et al.  The first Herschel view of the mass-SFR link in high-z galaxies , 2010, 1005.1089.

[114]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[115]  A. Dekel,et al.  On the origin of the galaxy star‐formation‐rate sequence: evolution and scatter , 2009, 0912.2169.

[116]  S. Okamura,et al.  Stellar populations of Lyα emitters at z= 3–4 based on deep large area surveys in the Subaru-SXDS/UKIDSS-UDS Field , 2009, 0911.2544.

[117]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[118]  Heidelberg,et al.  Star formation and mass assembly in high-redshift galaxies , 2009, 0905.0683.

[119]  B. Weiner,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .

[120]  S. White,et al.  The distribution of stellar mass in the low‐redshift Universe , 2009, 0901.0706.

[121]  Christopher J. Conselice,et al.  The structures of distant galaxies – III. The merger history of over 20 000 massive galaxies at z < 1.2 , 2008, 0812.3237.

[122]  P. Saracco,et al.  Stellar mass estimates in early-type galaxies: procedures, uncertainties and models dependence , 2008, 0811.4041.

[123]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[124]  K. Dolag,et al.  An MHD gadget for cosmological simulations , 2008, 0807.3553.

[125]  A. Mazure,et al.  The VIMOS VLT Deep Survey - Evolution of the major merger rate since z ~ 1 from spectroscopically confirmed galaxy pairs , 2008, 0807.2578.

[126]  J. Silk,et al.  Galaxy Mergers at z ≳ 1 in the HUDF: Evidence for a Peak in the Major Merger Rate of Massive Galaxies , 2007, 0712.0416.

[127]  J. Schaye,et al.  On the relation between the Schmidt and Kennicutt-Schmidt star formation laws and its implications for numerical simulations , 2007, 0709.0292.

[128]  M. Salvato,et al.  Evolution of the Frequency of Luminous (≥LV⋆) Close Galaxy Pairs at z < 1.2 in the COSMOS Field , 2007, 0705.2266.

[129]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[130]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[131]  C. Conselice,et al.  AEGIS: Star formation in field galaxies since z=1.1 . Dominance of gradually declining over episodic star formation , 2007 .

[132]  A. Hopkins,et al.  The Evolution of Galaxy Mergers and Morphology at z < 1.2 in the Extended Groth Strip , 2006, astro-ph/0602088.

[133]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[134]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[135]  Scott C. Chapman,et al.  Evidence for a Major Merger Origin of High-Redshift Submillimeter Galaxies , 2003, astro-ph/0308198.

[136]  M. Baes,et al.  Radiative transfer in disc galaxies – III. The observed kinematics of dusty disc galaxies , 2003, astro-ph/0304501.

[137]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[138]  J. Schaye Star Formation Thresholds and Galaxy Edges: Why and Where , 2004 .

[139]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[140]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[141]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[142]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[143]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[144]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .