Texture analysis in gel electrophoresis images using an integrative kernel-based approach

Texture information could be used in proteomics to improve the quality of the image analysis of proteins separated on a gel. In order to evaluate the best technique to identify relevant textures, we use several different kernel-based machine learning techniques to classify proteins in 2-DE images into spot and noise. We evaluate the classification accuracy of each of these techniques with proteins extracted from ten 2-DE images of different types of tissues and different experimental conditions. We found that the best classification model was FSMKL, a data integration method using multiple kernel learning, which achieved AUROC values above 95% while using a reduced number of features. This technique allows us to increment the interpretability of the complex combinations of textures and to weight the importance of each particular feature in the final model. In particular the Inverse Difference Moment exhibited the highest discriminating power. A higher value can be associated with an homogeneous structure as this feature describes the homogeneity; the larger the value, the more symmetric. The final model is performed by the combination of different groups of textural features. Here we demonstrated the feasibility of combining different groups of textures in 2-DE image analysis for spot detection.

[1]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[2]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[3]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[4]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[5]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[6]  Arie Nakhmani,et al.  Quantifying liver fibrosis through the application of texture analysis to diffusion weighted imaging. , 2014, Magnetic resonance imaging.

[7]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[8]  Mark Hewko,et al.  Collagen morphology and texture analysis: from statistics to classification , 2013, Scientific Reports.

[9]  Colin Campbell,et al.  Learning with Support Vector Machines , 2011, Learning with Support Vector Machines.

[10]  J. Dorado,et al.  High Order Texture-Based Analysis in Biomedical Images , 2014 .

[11]  Carlos Fernandez-Lozano,et al.  Markov mean properties for cell death-related protein classification. , 2014, Journal of theoretical biology.

[12]  H. Finner On a Monotonicity Problem in Step-Down Multiple Test Procedures , 1993 .

[13]  M. Bartlett Properties of Sufficiency and Statistical Tests , 1992 .

[14]  S Veeser,et al.  Multiresolution image registration for two‐dimensional gel electrophoresis , 2001, Proteomics.

[15]  Yvonne Schuhmacher,et al.  Handbook of Statistical Bioinformatics , 2011, Springer Handbooks of Computational Statistics.

[16]  Xiaofeng Yang,et al.  Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: an in vivo study of late toxicity. , 2012, Medical physics.

[17]  Jae-Hun Kim,et al.  Quantitative CT Variables Enabling Response Prediction in Neoadjuvant Therapy with EGFR-TKIs: Are They Different from Those in Neoadjuvant Concurrent Chemoradiotherapy? , 2014, PloS one.

[18]  Mario Cortina-Borja,et al.  Handbook of Parametric and Nonparametric Statistical Procedures, 5th edn , 2012 .

[19]  Dina Muin,et al.  Texture-based classification of different gastric tumors at contrast-enhanced CT. , 2013, European journal of radiology.

[20]  H. Eskola,et al.  Non-Hodgkin lymphoma response evaluation with MRI texture classification , 2009, Journal of experimental & clinical cancer research : CR.

[21]  V Goh,et al.  Assessment of changes in tumor heterogeneity following neoadjuvant chemotherapy in primary esophageal cancer. , 2015, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[22]  Maurice Clerc,et al.  Beyond Standard Particle Swarm Optimisation , 2010, Int. J. Swarm Intell. Res..

[23]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[24]  A. Kassner,et al.  Texture Analysis: A Review of Neurologic MR Imaging Applications , 2010, American Journal of Neuroradiology.

[25]  Chunlan Yang,et al.  Correlations Between B‐Mode Ultrasonic Image Texture Features and Tissue Temperature in Microwave Ablation , 2010, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[26]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[27]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[28]  Nikola Kasabov,et al.  Springer Handbook of Bio-/Neuro-Informatics , 2013 .

[29]  Carlos Fernandez-Lozano,et al.  Texture classification using feature selection and kernel-based techniques , 2015, Soft Computing.

[30]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[31]  Siegfried Trattnig,et al.  Texture‐based classification of focal liver lesions on MRI at 3.0 Tesla: A feasibility study in cysts and hemangiomas , 2010, Journal of magnetic resonance imaging : JMRI.

[32]  Ajai Jain,et al.  The Handbook of Pattern Recognition and Computer Vision , 1993 .

[33]  Igor Pantic,et al.  Complexity reduction of chromatin architecture in macula densa cells during mouse postnatal development , 2013, Nephrology.

[34]  Nello Cristianini,et al.  A statistical framework for genomic data fusion , 2004, Bioinform..

[35]  Yi Lu,et al.  An Improved Quantitative Analysis Method for Plant Cortical Microtubules , 2014, TheScientificWorldJournal.

[36]  T. Rabilloud,et al.  Two-dimensional gel electrophoresis in proteomics: Past, present and future. , 2010, Journal of proteomics.

[37]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[38]  A. Zeileis Econometric Computing with HC and HAC Covariance Matrix Estimators , 2004 .

[39]  Carol Muehleman,et al.  Vulnerability of the superficial zone of immature articular cartilage to compressive injury. , 2010, Arthritis and rheumatism.

[40]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[41]  D. Sheskin Handbook of parametric and nonparametric statistical procedures, 2nd ed. , 2000 .

[42]  Michael E. Wall,et al.  Galib: a c++ library of genetic algorithm components , 1996 .

[43]  Trey Ideker,et al.  Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes , 2010, Bioinform..

[44]  Colin Campbell,et al.  A pathway-based data integration framework for prediction of disease progression , 2013, Bioinform..

[45]  Vladimir Vapnik,et al.  Estimation of Dependences Based on Empirical Data: Empirical Inference Science (Information Science and Statistics) , 2006 .

[46]  Gary J. Harkin,et al.  Quantifying biofilm structure using image analysis. , 2000, Journal of microbiological methods.

[47]  LarrañagaPedro,et al.  A review of feature selection techniques in bioinformatics , 2007 .

[48]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[49]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[50]  Aixia Guo,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2014 .

[51]  Michal Strzelecki,et al.  Texture Analysis Methods - A Review , 1998 .

[52]  Shiquan Sun,et al.  A Kernel-Based Multivariate Feature Selection Method for Microarray Data Classification , 2014, PloS one.

[53]  Yong Li,et al.  Protective Role of Deoxyschizandrin and Schisantherin A against Myocardial Ischemia–Reperfusion Injury in Rats , 2013, PloS one.

[54]  Karsten M. Borgwardt,et al.  Kernel Methods in Bioinformatics , 2011, Handbook of Statistical Bioinformatics.

[55]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[56]  Francisco Herrera,et al.  A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability , 2009, Soft Comput..

[57]  Bernhard Schölkopf,et al.  Kernel Methods in Computational Biology , 2005 .

[58]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[59]  Mauricio Zambrano-Bigiarini,et al.  Standard Particle Swarm Optimisation 2011 at CEC-2013: A baseline for future PSO improvements , 2013, 2013 IEEE Congress on Evolutionary Computation.

[60]  Harry Zhang,et al.  Exploring Conditions For The Optimality Of Naïve Bayes , 2005, Int. J. Pattern Recognit. Artif. Intell..

[61]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[62]  Colin Campbell,et al.  Machine Learning Methodology in Bioinformatics , 2014 .

[63]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[64]  Carlo Vittorio Cannistraci,et al.  Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding , 2013, Bioinform..

[65]  Igor Pantic,et al.  Nuclear entropy, angular second moment, variance and texture correlation of thymus cortical and medullar lymphocytes: grey level co-occurrence matrix analysis. , 2013, Anais da Academia Brasileira de Ciencias.

[66]  K. Johnson An Update. , 1984, Journal of food protection.

[67]  Gunnar Rätsch,et al.  Support Vector Machines and Kernels for Computational Biology , 2008, PLoS Comput. Biol..

[68]  José Luis Rojo-Álvarez,et al.  Kernel Methods in Bioengineering, Signal And Image Processing , 2007 .

[69]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[70]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[71]  Philippe Besnard,et al.  Proceedings of the Eleventh conference on Uncertainty in artificial intelligence , 1995 .

[72]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[73]  Andrzej Materka,et al.  Texture analysis for tissue discrimination on T1‐weighted MR images of the knee joint in a multicenter study: Transferability of texture features and comparison of feature selection methods and classifiers , 2005, Journal of magnetic resonance imaging : JMRI.

[74]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[75]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[76]  Michal Strzelecki,et al.  MaZda - A software package for image texture analysis , 2009, Comput. Methods Programs Biomed..

[77]  Carlos Fernandez-Lozano,et al.  Two-dimensional gel electrophoresis image registration using block-matching techniques and deformation models. , 2014, Analytical biochemistry.

[78]  D. Wall,et al.  Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning , 2015, Translational Psychiatry.

[79]  Carlos Fernandez-Lozano,et al.  Texture Classification Using Kernel-Based Techniques , 2013, IWANN.

[80]  Nello Cristianini,et al.  Controlling the Sensitivity of Support Vector Machines , 1999 .

[81]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[82]  H. Eskola,et al.  MRI texture analysis in multiple sclerosis: toward a clinical analysis protocol. , 2010, Academic radiology.

[83]  Jing Zhang,et al.  Texture analysis of multiple sclerosis: a comparative study. , 2008, Magnetic resonance imaging.

[84]  Ethem Alpaydin,et al.  Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..

[85]  Guang-Zhong Yang,et al.  Image analysis tools and emerging algorithms for expression proteomics , 2010, Proteomics.

[86]  L. Costaridou,et al.  Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis. , 2010, The British journal of radiology.

[87]  Artur Klepaczko,et al.  Identifying barley varieties by computer vision , 2015, Comput. Electron. Agric..