Integrals, Quantum Galois Extensions, and the Affineness Criterion for Quantum Yetter–Drinfel'd Modules

Abstract In this paper we shall generalize the notion of an integral on a Hopf algebra introduced by Sweedler, by defining the more general concept of an integral of a threetuple (H, A, C), where H is a Hopf algebra coacting on an algebra A and acting on a coalgebra C. We prove that there exists a total integral γ: C → Hom(C, A) of (H, A, C) if and only if any representation of (H, A, C) is injective in a functorial way, as a corepresentation of C. In particular, the quantum integrals associated to Yetter–Drinfel'd modules are defined. Let now A be an H-bicomodule algebra, H Y D A the category of quantum Yetter–Drinfel'd modules, and B = {a ∈ A|∑S− 1(a〈1〉)a〈 − 1〉 ⊗ a〈0〉 = 1H ⊗ a}, the subalgebra of coinvariants of the Verma structure A ∈ H Y D A. We shall prove the following affineness criterion: if there exists γ: H → Hom(H, A) a total quantum integral and the canonical map β: A ⊗ B A → H ⊗ A, β(a ⊗ B b) = ∑S− 1(b〈1〉)b〈 − 1〉 ⊗ ab〈0〉 is surjective (i.e., A/B is a quantum homogeneous space), then the induction functor – ⊗ B A:  M B → H Y D A is an equivalence of categories. The affineness criteria proven by Cline, Parshall, and Scott, and independently by Oberst (for affine algebraic groups schemes) and Schneider (in the noncommutative case), are recovered as special cases.

[1]  C. Menini,et al.  A-H-BIMODULES AND EQUIVALENCES , 2001 .

[2]  Shenglin Zhu,et al.  Invariants of the adjoint coaction and Yetter–Drinfeld categories , 2001 .

[3]  T. Brzeziński The Structure of Corings: Induction Functors, Maschke-Type Theorem, and Frobenius and Galois-Type Properties , 2000, math/0002105.

[4]  S. Caenepeel,et al.  Modules over weak entwining structures , 2000 .

[5]  B. Torrecillas,et al.  Co-Frobenius Hopf Algebras: Integrals, Doi–Koppinen Modules and Injective Objects , 1999 .

[6]  S. Caenepeel,et al.  Separable Functors for the Category of Doi–Hopf Modules, Applications , 1999 .

[7]  G. Böhm Doi-hopf modules over weak hopf algebras , 1999 .

[8]  G. Militaru The Long Dimodules Category and Nonlinear Equations , 1998, math/9807017.

[9]  T. Kerler Bridged Links and Tangle Presentations of Cobordism Categories , 1998, math/9806114.

[10]  S. Majid,et al.  Coalgebra Bundles , 1998 .

[11]  G. Kuperberg Non-involutory Hopf algebras and 3-manifold invariants , 1997, q-alg/9712047.

[12]  G. Militaru,et al.  Crossed modules and doi-hopf modules , 1997 .

[13]  T. Brzeziński On Modules Associated to Coalgebra Galois Extensions , 1997, q-alg/9712023.

[14]  M. Miyamoto,et al.  Quantum Galois theory for finite groups , 1997, q-alg/9709041.

[15]  C. Menini,et al.  Equivalence Theorems and Hopf)Galois Extensions , 1997 .

[16]  S. Caenepeel,et al.  A Maschke Type Theorem for Doi–Hopf Modules and Applications , 1997 .

[17]  S. Caenepeel,et al.  DOI-HOPF MODULES, YETTER-DRINFEL'D MODULES AND FROBENIUS TYPE PROPERTIES , 1997 .

[18]  P. Etingof,et al.  Quantization of Lie bialgebras, II , 1996, math/9801043.

[19]  S. Majid,et al.  Coalgebra Gauge Theory , 1996, q-alg/9602022.

[20]  S. Majid Foundations of Quantum Group Theory , 1995 .

[21]  M. Koppinen Variations on the smash product with applications to group-graded rings , 1995 .

[22]  V. Lyubashenko Modular transformations for tensor categories , 1995 .

[23]  S. Caenepeel,et al.  Induction Functors for the Doi-Koppinen Unified Hopf Modules , 1995 .

[24]  C. Dong,et al.  On quantum Galois theory , 1994, hep-th/9412037.

[25]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[26]  Jacob Towber,et al.  Yetter-Drinfel'd categories associated to an arbitrary bialgebra , 1993 .

[27]  Susan Montgomery,et al.  Hopf algebras and their actions on rings , 1993 .

[28]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[29]  Yukio Doi Unifying Hopf modules , 1992 .

[30]  I. V. Verbovskii Integrals in Hopf algebras , 1992 .

[31]  S. Majid Doubles of quasitriangular hopf algebras , 1991 .

[32]  David N. Yettera Quantum groups and representations of monoidal categories , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  H. Schneider Principal homogeneous spaces for arbitrary Hopf algebras , 1990 .

[34]  H. Schneider Representation theory of Hopf galois extensions , 1990 .

[35]  M. Rosso Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra , 1988 .

[36]  G. Lusztig Quantum deformations of certain simple modules over enveloping algebras , 1988 .

[37]  Susan Montgomery,et al.  Crossed products and inner actions of Hopf algebras , 1986 .

[38]  Yukio Doi On the structure of relative hopf modules , 1983 .

[39]  D. Radford Finiteness conditions for a hopf algebra with a nonzero integral , 1977 .

[40]  U. Oberst Affine Quotientenschemata nach affinen, algebraischen Gruppen und induzierte darstellungen , 1977 .

[41]  E. Cline,et al.  Induced modules and affine quotients , 1977 .

[42]  A. Mišina,et al.  Abelian groups and modules , 1976 .

[43]  F. W. Long The Brauer group of dimodule algebras , 1974 .

[44]  N. Iwahori,et al.  A note on geometrically reductive groups , 1973 .

[45]  Richard G. Larson,et al.  An Associative Orthogonal Bilinear Form for Hopf Algebras , 1969 .