Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes

Identification of coding variant associations for complex diseases offers a direct route to biological insight, but is dependent on appropriate inference concerning the causal impact of those variants on disease risk. We aggregated coding variant data for 81,412 type 2 diabetes (T2D) cases and 370,832 controls of diverse ancestry, identifying 40 distinct coding variant association signals (at 38 loci) reaching significance (p<2.2×10−7). Of these, 16 represent novel associations mapping outside known genome-wide association study (GWAS) signals. We make two important observations. First, despite a threefold increase in sample size over previous efforts, only five of the 40 signals are driven by variants with minor allele frequency <5%, and we find no evidence for low-frequency variants with allelic odds ratio >1.29. Second, we used GWAS data from 50,160 T2D cases and 465,272 controls of European ancestry to fine-map these associated coding variants in their regional context, with and without additional weighting to account for the global enrichment of complex trait association signals in coding exons. At the 37 signals for which we attempted fine-mapping, we demonstrate convincing support (posterior probability >80% under the “annotation-weighted” model) that coding variants are causal for the association at 16 (including novel signals involving POC5 p.His36Arg, ANKH p.Arg187Gln, WSCD2 p.Thr113Ile, PLCB3 p.Ser778Leu, and PNPLA3 p.Ile148Met). However, at 13 of the 37 loci, the associated coding variants represent “false leads” and naïve analysis could have led to an erroneous inference regarding the effector transcript mediating the signal. Accurate identification of validated targets is dependent on correct specification of the contribution of coding and non-coding mediated mechanisms at associated loci.

Tanya M. Teslovich | Dajiang J. Liu | Sara M. Willems | Y. J. Kim | Blair H. Smith | J. Danesh | F. Kronenberg | W. Rathmann | O. Franco | A. Uitterlinden | T. Spector | A. Peters | J. Pankow | I. Ntalla | J. Cook | R. Mägi | M. McCarthy | P. Deloukas | E. Zeggini | A. Morris | J. Marchini | U. Thorsteinsdóttir | K. Stefánsson | E. Boerwinkle | V. Salomaa | M. Perola | T. Hansen | O. Pedersen | N. Grarup | T. Jørgensen | I. Brandslund | C. Lindgren | L. Groop | M. Laakso | F. Collins | K. Strauch | M. Boehnke | P. Ridker | D. Chasman | T. Frayling | A. Hattersley | N. W. Rayner | W. Sheu | V. Gudnason | M. Schulze | Albert Vernon Smith | A. Dehghan | A. Köttgen | C. Duijn | G. Thorleifsson | V. Steinthorsdottir | G. Malerba | S. Kardia | K. Small | T. Meitinger | K. Lohman | Yongmei Liu | B. Psaty | M. Province | N. Sattar | J. Flannick | A. Metspalu | K. Fischer | E. Ingelsson | G. Gambaro | Michael H. Preuss | K. Mohlke | C. Willer | J. Tuomilehto | K. Owen | A. Morris | N. Burtt | S. Kathiresan | P. Almgren | J. Florez | B. Isomaa | O. Melander | M. Orho-Melander | T. Tuomi | K. Taylor | J. Rotter | R. Sladek | P. Froguel | L. Lind | R. Chowdhury | T. Harris | R. Rauramaa | M. Stumvoll | J. Brody | P. Amouyel | J. Meigs | L. Bielak | P. Peyser | N. Wareham | B. Nordestgaard | J. Dupuis | K. Rice | A. Mahajan | S. Gustafsson | H. Grallert | P. Franks | Y. S. Cho | B. Han | N. Soranzo | Xiuqing Guo | S. F. Nielsen | G. Peloso | D. Saleheen | James G. Wilson | J. Kooner | E. Bottinger | S. Rich | I. Barroso | J. Howson | N. Robertson | N. Amin | C. Hayward | Wei Zhao | G. Dedoussis | L. Launer | S. Heckbert | M. Ingelsson | J. Marten | R. Scott | A. Stančáková | T. V. Varga | H. Warren | Weihua Zhang | Saima Afaq | M. Canouil | R. de Mutsert | J. Kuusisto | C. Langenberg | B. Lehne | M. Loh | F. Rosendaal | Jie Yao | J. Chambers | D. Mook-Kanamori | J. Bork-Jensen | R. Loos | R. Varma | L. Yengo | Ching‐Ti Liu | D. Rybin | Man Li | A. Wood | Jasmina Kravic | S. Männistö | B. Thorand | C. Palmer | A. Demirkan | M. Goodarzi | Yii-Der I. Chen | J. Ferrières | A. Bertoni | A. Butterworth | Pranav Yajnik | H. Boeing | K. Kuulasmaa | Xu Lin | A. Linneberg | A. Varbo | P. Kovacs | A. Tönjes | G. Nadkarni | A. Chu | A. Justice | M. Blüher | V. Giedraitis | Yingchang Lu | F. Kee | E. Marouli | H. Highland | C. Christensen | M. Ferrario | W. Gan | M. Grove | M. Jørgensen | F. Karpe | H. Kitajima | J. Kriebel | L. Lange | Huaixing(黎怀星) Li | Jin Li | R. Li-Gao | K. Meidtner | M. Neville | A. Rasheed | O. Rolandsson | P. Surendran | J. Wessel | D. Witte | H. Yaghootkar | R. Young | C. Lecoeur | S. Hackinger | R. Mckean-Cowdin | A. Murray | E. Ahlqvist | A. Käräjämäki | A. Rosengren | Bong-Jo Kim | H. Koistinen | B. Prins | K. Eckardt | Sung Soo Kim | D. Taliun | M. Wuttke | A. Tin | M. Hivert | P. An | S. Schönherr | C. Bombieri | Y. Hai | R. Jensen | Vasiliki Mamakou | E. Selvin | Keng-Hung Lin | K. Läll | S. Ligthart | P. Frossard | S. Eastwood | A. Tybjærg‐Hansen | Sohee Han | Jung-Jin Lee | Jun Liu | V. Trubetskoy | H. D. de Haan | Yao Hu | L. Rode | Fernando Rivadineira | S. Jäger | S. Afzal | M. Graff | M. Moitry | Shaofeng Huo | Martina Mñller-Nurasyid | J. F. Tajes | Lia B Bang | J. Yao | Huaixing Li | A. Smith

[1]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[2]  Johan Auwerx,et al.  A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity , 1998, Nature Genetics.

[3]  Tien Yin Wong,et al.  Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci , 2011, Nature Genetics.

[4]  Amy L. Williams,et al.  Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. , 2014, JAMA.

[5]  K. Shianna,et al.  Long-range LD can confound genome scans in admixed populations. , 2008, American journal of human genetics.

[6]  Evangelos Evangelou,et al.  Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations , 2007, PloS one.

[7]  Cathie Sudlow,et al.  Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank , 2016, PloS one.

[8]  Jon Wakefield,et al.  A Bayesian measure of the probability of false discovery in genetic epidemiology studies. , 2007, American journal of human genetics.

[9]  Andrew P Morris,et al.  Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes , 2016, European Journal of Human Genetics.

[10]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[11]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[12]  Anne Tybjærg-Hansen,et al.  Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease , 2014, Nature Genetics.

[13]  Han Xu,et al.  Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. , 2014, American journal of human genetics.

[14]  Kari Stefansson,et al.  Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes , 2014, Nature Genetics.

[15]  Tom R. Gaunt,et al.  The UK10K project identifies rare variants in health and disease , 2016 .

[16]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.

[17]  Inês Barroso,et al.  Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance , 2016, Nature Genetics.

[18]  Christian Gieger,et al.  Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci , 2016 .

[19]  Nicola L. Beer,et al.  The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver , 2009, Human molecular genetics.

[20]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[21]  Zoltán Kutalik,et al.  Quality control and conduct of genome-wide association meta-analyses , 2014, Nature Protocols.

[22]  Inês Barroso,et al.  Prospective functional classification of all possible missense variants in PPARG , 2016, Nature Genetics.

[23]  H. Kang,et al.  Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.

[24]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[25]  Wei Lu,et al.  Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians , 2011, Nature Genetics.

[26]  M. Daly,et al.  Guilt beyond a reasonable doubt , 2007, Nature Genetics.

[27]  Alexander Pertsemlidis,et al.  Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease , 2008, Nature Genetics.

[28]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[29]  Inês Barroso,et al.  Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity , 2014, Diabetes.

[30]  Jake K. Byrnes,et al.  Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.

[31]  Andrew P Morris,et al.  Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility , 2016, European Journal of Human Genetics.

[32]  Christian Fuchsberger,et al.  A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. , 2014, American journal of human genetics.

[33]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[34]  Simon Cawley,et al.  Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. , 2011, Genomics.

[35]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[36]  Bernhard Horsthemke,et al.  Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms , 2014, Cell.

[37]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[38]  Thomas Meitinger,et al.  Loss-of-function mutations in SLC30A8 protect against type 2 diabetes , 2014, Nature Genetics.

[39]  Sungkyoung Choi,et al.  Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms , 2016, Human molecular genetics.

[40]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[41]  Nicholette D. Palmer,et al.  Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes , 2014, PLoS genetics.

[42]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[43]  Pui-Yan Kwok,et al.  Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. , 2011, Genomics.

[44]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[45]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[46]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[47]  A. Hattersley,et al.  Clinical implications of a molecular genetic classification of monogenic β-cell diabetes , 2008, Nature Clinical Practice Endocrinology &Metabolism.

[48]  Anders Albrechtsen,et al.  Weighting sequence variants based on their annotation increases power of whole-genome association studies , 2016, Nature Genetics.

[49]  Mark I. McCarthy,et al.  Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors , 2015, PLoS genetics.

[50]  Pierre Fontanillas,et al.  Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes , 2014, Proceedings of the National Academy of Sciences.

[51]  Cedric Gondro,et al.  Quality control for genome-wide association studies. , 2013, Methods in molecular biology.

[52]  Dajiang J. Liu,et al.  Meta-Analysis of Gene Level Tests for Rare Variant Association , 2013, Nature Genetics.

[53]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[54]  Philippe Froguel,et al.  Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice , 2017, American journal of human genetics.

[55]  Eric Boerwinkle,et al.  Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium , 2013, PloS one.

[56]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.