Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
暂无分享,去创建一个
Tanya M. Teslovich | Dajiang J. Liu | Sara M. Willems | Y. J. Kim | Blair H. Smith | J. Danesh | F. Kronenberg | W. Rathmann | O. Franco | A. Uitterlinden | T. Spector | A. Peters | J. Pankow | I. Ntalla | J. Cook | R. Mägi | M. McCarthy | P. Deloukas | E. Zeggini | A. Morris | J. Marchini | U. Thorsteinsdóttir | K. Stefánsson | E. Boerwinkle | V. Salomaa | M. Perola | T. Hansen | O. Pedersen | N. Grarup | T. Jørgensen | I. Brandslund | C. Lindgren | L. Groop | M. Laakso | F. Collins | K. Strauch | M. Boehnke | P. Ridker | D. Chasman | T. Frayling | A. Hattersley | N. W. Rayner | W. Sheu | V. Gudnason | M. Schulze | Albert Vernon Smith | A. Dehghan | A. Köttgen | C. Duijn | G. Thorleifsson | V. Steinthorsdottir | G. Malerba | S. Kardia | K. Small | T. Meitinger | K. Lohman | Yongmei Liu | B. Psaty | M. Province | N. Sattar | J. Flannick | A. Metspalu | K. Fischer | E. Ingelsson | G. Gambaro | Michael H. Preuss | K. Mohlke | C. Willer | J. Tuomilehto | K. Owen | A. Morris | N. Burtt | S. Kathiresan | P. Almgren | J. Florez | B. Isomaa | O. Melander | M. Orho-Melander | T. Tuomi | K. Taylor | J. Rotter | R. Sladek | P. Froguel | L. Lind | R. Chowdhury | T. Harris | R. Rauramaa | M. Stumvoll | J. Brody | P. Amouyel | J. Meigs | L. Bielak | P. Peyser | N. Wareham | B. Nordestgaard | J. Dupuis | K. Rice | A. Mahajan | S. Gustafsson | H. Grallert | P. Franks | Y. S. Cho | B. Han | N. Soranzo | Xiuqing Guo | S. F. Nielsen | G. Peloso | D. Saleheen | James G. Wilson | J. Kooner | E. Bottinger | S. Rich | I. Barroso | J. Howson | N. Robertson | N. Amin | C. Hayward | Wei Zhao | G. Dedoussis | L. Launer | S. Heckbert | M. Ingelsson | J. Marten | R. Scott | A. Stančáková | T. V. Varga | H. Warren | Weihua Zhang | Saima Afaq | M. Canouil | R. de Mutsert | J. Kuusisto | C. Langenberg | B. Lehne | M. Loh | F. Rosendaal | Jie Yao | J. Chambers | D. Mook-Kanamori | J. Bork-Jensen | R. Loos | R. Varma | L. Yengo | Ching‐Ti Liu | D. Rybin | Man Li | A. Wood | Jasmina Kravic | S. Männistö | B. Thorand | C. Palmer | A. Demirkan | M. Goodarzi | Yii-Der I. Chen | J. Ferrières | A. Bertoni | A. Butterworth | Pranav Yajnik | H. Boeing | K. Kuulasmaa | Xu Lin | A. Linneberg | A. Varbo | P. Kovacs | A. Tönjes | G. Nadkarni | A. Chu | A. Justice | M. Blüher | V. Giedraitis | Yingchang Lu | F. Kee | E. Marouli | H. Highland | C. Christensen | M. Ferrario | W. Gan | M. Grove | M. Jørgensen | F. Karpe | H. Kitajima | J. Kriebel | L. Lange | Huaixing(黎怀星) Li | Jin Li | R. Li-Gao | K. Meidtner | M. Neville | A. Rasheed | O. Rolandsson | P. Surendran | J. Wessel | D. Witte | H. Yaghootkar | R. Young | C. Lecoeur | S. Hackinger | R. Mckean-Cowdin | A. Murray | E. Ahlqvist | A. Käräjämäki | A. Rosengren | Bong-Jo Kim | H. Koistinen | B. Prins | K. Eckardt | Sung Soo Kim | D. Taliun | M. Wuttke | A. Tin | M. Hivert | P. An | S. Schönherr | C. Bombieri | Y. Hai | R. Jensen | Vasiliki Mamakou | E. Selvin | Keng-Hung Lin | K. Läll | S. Ligthart | P. Frossard | S. Eastwood | A. Tybjærg‐Hansen | Sohee Han | Jung-Jin Lee | Jun Liu | V. Trubetskoy | H. D. de Haan | Yao Hu | L. Rode | Fernando Rivadineira | S. Jäger | S. Afzal | M. Graff | M. Moitry | Shaofeng Huo | Martina Mñller-Nurasyid | J. F. Tajes | Lia B Bang | J. Yao | Huaixing Li | A. Smith
[1] P. Donnelly,et al. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.
[2] Johan Auwerx,et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity , 1998, Nature Genetics.
[3] Tien Yin Wong,et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci , 2011, Nature Genetics.
[4] Amy L. Williams,et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. , 2014, JAMA.
[5] K. Shianna,et al. Long-range LD can confound genome scans in admixed populations. , 2008, American journal of human genetics.
[6] Evangelos Evangelou,et al. Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations , 2007, PloS one.
[7] Cathie Sudlow,et al. Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank , 2016, PloS one.
[8] Jon Wakefield,et al. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. , 2007, American journal of human genetics.
[9] Andrew P Morris,et al. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes , 2016, European Journal of Human Genetics.
[10] J. Marchini,et al. Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.
[11] P. Visscher,et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.
[12] Anne Tybjærg-Hansen,et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease , 2014, Nature Genetics.
[13] Han Xu,et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. , 2014, American journal of human genetics.
[14] Kari Stefansson,et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes , 2014, Nature Genetics.
[15] Tom R. Gaunt,et al. The UK10K project identifies rare variants in health and disease , 2016 .
[16] Tanya M. Teslovich,et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.
[17] Inês Barroso,et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance , 2016, Nature Genetics.
[18] Christian Gieger,et al. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci , 2016 .
[19] Nicola L. Beer,et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver , 2009, Human molecular genetics.
[20] Gabor T. Marth,et al. A global reference for human genetic variation , 2015, Nature.
[21] Zoltán Kutalik,et al. Quality control and conduct of genome-wide association meta-analyses , 2014, Nature Protocols.
[22] Inês Barroso,et al. Prospective functional classification of all possible missense variants in PPARG , 2016, Nature Genetics.
[23] H. Kang,et al. Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.
[24] James Y. Zou. Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.
[25] Wei Lu,et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians , 2011, Nature Genetics.
[26] M. Daly,et al. Guilt beyond a reasonable doubt , 2007, Nature Genetics.
[27] Alexander Pertsemlidis,et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease , 2008, Nature Genetics.
[28] Tamara S. Roman,et al. New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.
[29] Inês Barroso,et al. Impact of Type 2 Diabetes Susceptibility Variants on Quantitative Glycemic Traits Reveals Mechanistic Heterogeneity , 2014, Diabetes.
[30] Jake K. Byrnes,et al. Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.
[31] Andrew P Morris,et al. Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility , 2016, European Journal of Human Genetics.
[32] Christian Fuchsberger,et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. , 2014, American journal of human genetics.
[33] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[34] Simon Cawley,et al. Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. , 2011, Genomics.
[35] Ross M. Fraser,et al. Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.
[36] Bernhard Horsthemke,et al. Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms , 2014, Cell.
[37] Stephen C. J. Parker,et al. The genetic architecture of type 2 diabetes , 2016, Nature.
[38] Thomas Meitinger,et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes , 2014, Nature Genetics.
[39] Sungkyoung Choi,et al. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms , 2016, Human molecular genetics.
[40] Jun S. Liu,et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.
[41] Nicholette D. Palmer,et al. Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes , 2014, PLoS genetics.
[42] Tanya M. Teslovich,et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.
[43] Pui-Yan Kwok,et al. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. , 2011, Genomics.
[44] P. Elliott,et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.
[45] J. Shendure,et al. A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.
[46] Eric S. Lander,et al. A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.
[47] A. Hattersley,et al. Clinical implications of a molecular genetic classification of monogenic β-cell diabetes , 2008, Nature Clinical Practice Endocrinology &Metabolism.
[48] Anders Albrechtsen,et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies , 2016, Nature Genetics.
[49] Mark I. McCarthy,et al. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors , 2015, PLoS genetics.
[50] Pierre Fontanillas,et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes , 2014, Proceedings of the National Academy of Sciences.
[51] Cedric Gondro,et al. Quality control for genome-wide association studies. , 2013, Methods in molecular biology.
[52] Dajiang J. Liu,et al. Meta-Analysis of Gene Level Tests for Rare Variant Association , 2013, Nature Genetics.
[53] J. Marchini,et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.
[54] Philippe Froguel,et al. Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice , 2017, American journal of human genetics.
[55] Eric Boerwinkle,et al. Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium , 2013, PloS one.
[56] K. Roeder,et al. Genomic Control for Association Studies , 1999, Biometrics.