Water Level Fluctuations in the Congo Basin Derived from ENVISAT Satellite Altimetry

In the Congo Basin, the elevated vulnerability of food security and the water supply implies that sustainable development strategies must incorporate the effects of climate change on hydrological regimes. However, the lack of observational hydro-climatic data over the past decades strongly limits the number of studies investigating the effects of climate change in the Congo Basin. We present the largest altimetry-based dataset of water levels ever constituted over the entire Congo Basin. This dataset of water levels illuminates the hydrological regimes of various tributaries of the Congo River. A total of 140 water level time series are extracted using ENVISAT altimetry over the period of 2003 to 2009. To improve the understanding of the physical phenomena dominating the region, we perform a K-means cluster analysis of the altimeter-derived river level height variations to identify groups of hydrologically similar catchments. This analysis reveals nine distinct hydrological regions. The proposed regionalization scheme is validated and therefore considered reliable for estimating monthly water level variations in the Congo Basin. This result confirms the potential of satellite altimetry in monitoring spatio-temporal water level variations as a promising and unprecedented means for improved representation of the hydrologic characteristics in large ungauged river basins.

[1]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[2]  Carol Alf O'Connor,et al.  Comparison of Method of Residuals and Cluster Analysis for Flood Regionalization , 1989 .

[3]  James L. Davis,et al.  Land water storage within the Congo Basin inferred from GRACE satellite gravity data , 2006 .

[4]  Melanie L. J. Stiassny,et al.  The Congo River Basin , 2016 .

[5]  Maximilien Sorre Le climat écologique de la cuvette centrale congolaise [D'après Mr Etienne Bernard] , 1948 .

[6]  M. C. Musambachime,et al.  King Leopold's ghost: a story of greed, terror and heroism in colonial Africa , 2010 .

[7]  D. Burn,et al.  The formation of groups for regional flood frequency analysis , 2000 .

[8]  S. Calmant,et al.  Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions , 2010 .

[9]  Vijay P. Singh,et al.  Hydrologic Regionalization of Watersheds in Turkey , 2008 .

[10]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[11]  A. Ramachandra Rao,et al.  Regionalization of watersheds by fuzzy cluster analysis , 2006 .

[12]  S. Hastenrath,et al.  Diagnosing the Droughts and Floods in Equatorial East Africa during Boreal Autumn 2005–08 , 2010 .

[13]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Elfatih A. B. Eltahir,et al.  A see-saw oscillation between the Amazon and Congo basins , 2004 .

[15]  A. Cazenave,et al.  SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data , 2011 .

[16]  Pierre Vennetier Geographie du Congo-Brazzaville , 1968 .

[17]  S. Hastenrath,et al.  Diagnosing the 2005 Drought in Equatorial East Africa , 2007 .

[18]  Étienne Bernard Le climat écologique de la cuvette centrale congolaise , 1949 .

[19]  C. Birkett,et al.  Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin , 2002 .

[20]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[21]  D. Lettenmaier,et al.  Measuring surface water from space , 2004 .

[22]  Elena Toth,et al.  Catchment classification based on characterisation of streamflow and precipitation time series , 2012 .

[23]  G. Mahé,et al.  Modulation annuelle et fluctuations interannuelles des précipitations sur le bassin versant du Congo , 1995 .

[24]  Gérard Cochonneau,et al.  The Environmental Observation and Research project, ORE HYBAM, and the rivers of the Amazon basin. , 2006 .

[25]  Didier Orange,et al.  Origine des variations de débits du Congo à Brazzaville durant le XXème siècle , 1998 .

[26]  D. Alsdorf,et al.  Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers , 2010 .

[27]  R. E. Dickinson,et al.  How the Congo basin deforestation and the equatorial monsoonal circulation influence the regional hydrological cycle , 2006 .

[28]  G. Mahé,et al.  Trends and discontinuities in regional rainfall of West and Central Africa: 1951–1989 , 2001 .

[29]  T. Wehr,et al.  Geophysical validation of envisat data products , 2001 .

[30]  Jonathan L. Bamber,et al.  Ice sheet altimeter processing scheme , 1994 .

[31]  R. Clarke,et al.  Uncertainty in the estimation of mean annual flood due to rating-curve indefinition , 1999 .

[32]  Qiuhong Tang,et al.  Remote sensing: hydrology , 2009 .

[33]  C. K. Shum,et al.  Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry , 2011 .

[34]  A. Cazenave,et al.  Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin , 2006 .

[35]  F. O'Loughlin,et al.  Hydraulic characterization of the middle reach of the Congo River , 2013 .

[36]  A. Ramachandra Rao,et al.  Regionalization of watersheds by hybrid-cluster analysis , 2006 .

[37]  Jean-François Crétaux,et al.  Recent hydrological behavior of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations , 2010 .

[38]  Bernard Rosner,et al.  On the Detection of Many Outliers , 1975 .

[39]  Franz Bultot Atlas climatique du bassin congolais. 2e partie, Les composantes du bilan d'eau , 2015 .