On numerical approximation of the Hamilton-Jacobi-transport system arising in high frequency approximations

In the present article, we study the numerical approximation of a system of Hamilton-Jacobi and transport equations arising in geometrical optics. We consider a semi-Lagrangian scheme. We prove the well posedness of the discrete problem and the convergence of the approximated solution toward the viscosity-measure valued solution of the exact problem.

[1]  Yves Lucet,et al.  Faster than the Fast Legendre Transform, the Linear-time Legendre Transform , 1997, Numerical Algorithms.

[2]  Bertrand Maury,et al.  Handling congestion in crowd motion modeling , 2011, Networks Heterog. Media.

[3]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[4]  P. Lions,et al.  Mean field games , 2007 .

[5]  G. Petrova,et al.  Linear transport equations with discontinuous coefficients , 1999 .

[6]  Diogo A. Gomes,et al.  Viscosity solution methods and the discrete Aubry-Mather problem , 2005 .

[7]  H. Bethe,et al.  A Relativistic equation for bound state problems , 1951 .

[8]  Laurent Gosse,et al.  Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients , 2000, Math. Comput..

[9]  L. Corrias Fast Legendre--Fenchel Transform and Applications to Hamilton--Jacobi Equations and Conservation Laws , 1996 .

[10]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[11]  Y. Brenier Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discrètes , 1989 .

[12]  Benedetto Piccoli,et al.  Multiscale Modeling of Granular Flows with Application to Crowd Dynamics , 2010, Multiscale Model. Simul..

[13]  F. James,et al.  One-dimensional transport equations with discontinuous coefficients , 1998 .

[14]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[15]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[16]  Yves Lucet What Shape Is Your Conjugate? A Survey of Computational Convex Analysis and Its Applications , 2010, SIAM Rev..

[17]  Michel Rascle,et al.  Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients , 1997 .

[18]  Xu-Dong Liu,et al.  Positive schemes for solving multi-dimensional hyperbolic systems of conservation laws II , 2003 .

[19]  P. Souganidis Approximation schemes for viscosity solutions of Hamilton-Jacobi equations , 1985 .

[20]  Chi-Tien Lin,et al.  $L^1$-Stability and error estimates for approximate Hamilton-Jacobi solutions , 2001, Numerische Mathematik.

[21]  M. Falcone,et al.  Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods , 2002 .

[22]  M. Falcone,et al.  Numerical schemes for conservation laws via Hamilton-Jacobi equations , 1995 .

[23]  Rémi Carles,et al.  Semi-Classical Analysis For Nonlinear Schrodinger Equations , 2008 .

[24]  G. Kossioris,et al.  On the System of Hamilton–Jacobi and Transport Equations Arising in Geometrical Optics , 2003 .

[25]  Laurent Gosse,et al.  Convergence results for an inhomogeneous system arising in various high frequency approximations , 2002, Numerische Mathematik.