Time resolved insights into abnormal grain growth by in situ synchrotron measurements

[1]  Ji Ma,et al.  Massive Reorientations of Bulk Single and Oligocrystals via Solid State Processing , 2022, Acta Materialia.

[2]  T. Niendorf,et al.  Novel prestressing applications in civil engineering structures enabled by Fe Mn Al Ni shape memory alloys , 2021 .

[3]  Yanlin Song,et al.  Wafer-scale single crystals: crystal growth mechanisms, fabrication methods, and functional applications , 2021 .

[4]  T. Niendorf,et al.  Functionally graded structures realized based on Fe–Mn–Al–Ni shape memory alloys , 2021 .

[5]  A. Borgenstam,et al.  In-Situ High-Energy X-ray Diffraction Study of Austenite Decomposition During Rapid Cooling and Isothermal Holding in Two HSLA Steels , 2021, Metallurgical and Materials Transactions A.

[6]  R. Kainuma,et al.  Abnormal grain growth in Fe–Mn–Al–Ni shape memory alloy with higher Al content , 2020 .

[7]  Ze Zhang,et al.  Processing, Microstructures and Mechanical Properties of a Ni-Based Single Crystal Superalloy , 2020, Crystals.

[8]  H. Poulsen,et al.  The ESRF dark-field x-ray microscope at ID06 , 2019, IOP Conference Series: Materials Science and Engineering.

[9]  Amit Jain,et al.  Optimal design of bridge columns constructed with engineered cementitious composites and Cu-Al-Mn superelastic alloys , 2019, Engineering Structures.

[10]  A. Leineweber,et al.  Thermodynamic assessment and experimental investigation of the systems Al–Fe–Mn and Al–Fe–Mn–Ni , 2019, Calphad.

[11]  E. Taleff,et al.  Subgrains, Texture Evolution, and Dynamic Abnormal Grain Growth in a Mo Rod Material , 2019, Metallurgical and Materials Transactions A.

[12]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[13]  R. Kainuma,et al.  Large [001] single crystals via abnormal grain growth from columnar polycrystal , 2019, Materialia.

[14]  T. Niendorf,et al.  Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments , 2019, Nature Communications.

[15]  M. Saiidi,et al.  Mechanical splicing of superelastic Cu–Al–Mn alloy bars with headed ends , 2018 .

[16]  Y. Araki,et al.  Ultra-large single crystals by abnormal grain growth , 2017, Nature Communications.

[17]  R. Kainuma,et al.  Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy , 2016 .

[18]  Ji Ma,et al.  The effect of precipitates on the superelastic response of [1 0 0] oriented FeMnAlNi single crystals under compression , 2015 .

[19]  E. Taleff,et al.  Dynamic Abnormal Grain Growth in Refractory Metals , 2015 .

[20]  Jonathan P. Wright,et al.  The fast azimuthal integration Python library: pyFAI , 2015, Journal of applied crystallography.

[21]  W. Ludwig,et al.  Dark-field X-ray microscopy for multiscale structural characterization , 2015, Nature Communications.

[22]  Yoshikazu Araki,et al.  Abnormal Grain Growth Induced by Cyclic Heat Treatment , 2013, Science.

[23]  R. Kainuma,et al.  Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles , 2012 .

[24]  K. Ishida,et al.  Superelastic Effect in Polycrystalline Ferrous Alloys , 2011, Science.

[25]  Norbert Schell,et al.  The High Energy Materials Science Beamline (HEMS) at PETRA III , 2010 .

[26]  H. Schaeben,et al.  Texture Analysis with MTEX – Free and Open Source Software Toolbox , 2010 .

[27]  J. Ciulik,et al.  Dynamic abnormal grain growth: A new method to produce single crystals , 2009 .

[28]  J. Humphreys,et al.  Abnormal Grain Growth in Metals , 2007 .

[29]  Hans-Rudolf Wenk,et al.  Electronic Reprint Applied Crystallography Synchrotron Texture Analysis with Area Detectors Applied Crystallography Synchrotron Texture Analysis with Area Detectors , 2022 .

[30]  T. Quested,et al.  A comparison of grain imaging and measurement using horizontal orientation and colour orientation contrast imaging, electron backscatter pattern and optical methods , 1999, Journal of microscopy.

[31]  F. J. Humphreys A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model , 1997 .

[32]  H. Satoh,et al.  The development of texture in Fe-Cr-Co-Mo permanent magnet alloys , 1991 .

[33]  S. Sugimoto,et al.  The enhancement of the magnetic properties of Fe‐Cr‐Co‐Mo polycrystalline permanent magnet alloys by cold rolling and annealing , 1988 .

[34]  R. Sandström,et al.  Subgrain growth in Al and Al-1% Mn during annealing , 1978 .

[35]  Mats Hillert,et al.  On the theory of normal and abnormal grain growth , 1965 .

[36]  James C. M. Li,et al.  Possibility of Subgrain Rotation during Recrystallization , 1962 .

[37]  D. C. Stockbarger The Production of Large Single Crystals of Lithium Fluoride , 1936 .

[38]  J. Czochralski,et al.  Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle , 1918 .

[39]  Ji Ma,et al.  Microstructural design considerations in Fe-Mn-Al-Ni shape memory alloy wires: Effects of natural aging , 2018 .

[40]  T. Niendorf,et al.  On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy , 2017 .

[41]  Pavel Lejček,et al.  Grain boundary segregation in metals , 2010 .

[42]  Alexander S. Mukasyan,et al.  Current Opinion in Solid State and , 2009 .

[43]  H. Satoh,et al.  Evolution Process of 〈100〉 Texture in Fe–Cr–Co–Mo Permanent Magnets , 1991 .

[44]  P. W. Bridgman Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin , 1925 .