In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development.

Progress toward understanding embryonic heart development has been hampered by the inability to image embryonic heart structure and simultaneously measure blood flow dynamics in vivo. We have developed a spectral domain optical coherence tomography system for in vivo volumetric imaging of the chicken embryo heart. We have also developed a technique called spectral Doppler velocimetry (SDV) for quantitative measurement of blood flow dynamics. We present in vivo volume images of the embryonic heart from initial tube formation to development of endocardial cushions of the same embryo over several stages of development. SDV measurements reveal the influence of heart tube structure on blood flow dynamics.

[1]  K. Tobita,et al.  Maturation of end-systolic stress-strain relations in chick embryonic myocardium. , 2000, American journal of physiology. Heart and circulatory physiology.

[2]  J. Izatt,et al.  High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography. , 1997, Optics express.

[3]  Jörg Männer,et al.  Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process , 2000, The Anatomical record.

[4]  Renato Perucchio,et al.  Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. , 2007, Journal of biomechanical engineering.

[5]  J. Wladimiroff,et al.  Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction , 2004, Journal of Experimental Biology.

[6]  Raymond B. Runyan,et al.  Cell biology of cardiac cushion development. , 2005, International review of cytology.

[7]  Joseph A. Izatt,et al.  Optical Coherence Tomography: A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos , 2002, Circulation.

[8]  Joseph Izatt,et al.  Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry , 2009, Anatomical record.

[9]  M. Vanauker,et al.  A Role for the Cytoskeleton in Heart Looping , 2007, TheScientificWorldJournal.

[10]  Adrian Mariampillai,et al.  Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. , 2007, Optics express.

[11]  Louis A. Romero,et al.  A Cellular Automata Method for Phase Unwrapping , 1986, Topical Meeting On Signal Recovery and Synthesis II.

[12]  Michael Liebling,et al.  Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences. , 2005, Journal of biomedical optics.

[13]  Joseph A Izatt,et al.  In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. , 2007, Journal of biomedical optics.

[14]  Anna I Hickerson,et al.  The Embryonic Vertebrate Heart Tube Is a Dynamic Suction Pump , 2006, Science.

[15]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[16]  Daniel X Hammer,et al.  Dual-beam Fourier domain optical Doppler tomography of zebrafish. , 2008, Optics express.

[17]  Theo Arts,et al.  Wall Shear Stress – an Important Determinant of Endothelial Cell Function and Structure – in the Arterial System in vivo , 2006, Journal of Vascular Research.

[18]  T G van Leeuwen,et al.  High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography. , 1999, Optics letters.

[19]  David Sedmera,et al.  High‐frequency ultrasonographic imaging of avian cardiovascular development , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[20]  T. M. Yelbuz,et al.  Improved preparation of chick embryonic samples for magnetic resonance microscopy , 2003, Magnetic resonance in medicine.

[21]  Gabriel Acevedo-Bolton,et al.  Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , 2003, Nature.

[22]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[23]  T. M. Yelbuz,et al.  Images in cardiovascular medicine. Approaching cardiac development in three dimensions by magnetic resonance microscopy. , 2003, Circulation.

[24]  M. V. van Gemert,et al.  Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. , 1997, Optics letters.

[25]  W. Burggren What Is the Purpose of the Embryonic Heart Beat? or How Facts Can Ultimately Prevail over Physiological Dogma , 2004, Physiological and Biochemical Zoology.

[26]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[27]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[28]  Lei Wang,et al.  Frequency domain phase-resolved optical Doppler and Doppler variance tomography , 2004 .

[29]  M. Fishman,et al.  Fashioning the vertebrate heart: earliest embryonic decisions. , 1997, Development.

[30]  R E Poelmann,et al.  Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. , 1999, Cardiovascular research.

[31]  M J Paulus,et al.  High resolution X-ray computed tomography: an emerging tool for small animal cancer research. , 2000, Neoplasia.

[32]  Daniel L Marks,et al.  Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. , 2006, Journal of biomedical optics.

[33]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[34]  D. Turnbull,et al.  40 MHz Doppler characterization of umbilical and dorsal aortic blood flow in the early mouse embryo. , 2000, Ultrasound in medicine & biology.

[35]  Jörg Männer,et al.  High‐resolution in vivo imaging of the cross‐sectional deformations of contracting embryonic heart loops using optical coherence tomography , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[36]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[37]  B. J. Martinsen,et al.  Reference guide to the stages of chick heart embryology , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[38]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[39]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[40]  N. Hu,et al.  Hemodynamics of the Stage 12 to Stage 29 Chick Embryo , 1989, Circulation research.

[41]  Orlando Aristizábal,et al.  Spatial velocity profile in mouse embryonic aorta and Doppler-derived volumetric flow: a preliminary model. , 2002, American journal of physiology. Heart and circulatory physiology.

[42]  J. Fujimoto,et al.  Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Roger R Markwald,et al.  Transitions in Early Embryonic Atrioventricular Valvular Function Correspond With Changes in Cushion Biomechanics That Are Predictable by Tissue Composition , 2007, Circulation research.

[44]  J. Izatt,et al.  Real-time optical coherence tomography of the anterior segment at 1310 nm. , 2001, Archives of ophthalmology.

[45]  Martin Baiker,et al.  Changes in Shear Stress–Related Gene Expression After Experimentally Altered Venous Return in the Chicken Embryo , 2005, Circulation research.

[46]  E. Chérin,et al.  A new ultrasound instrument for in vivo microimaging of mice. , 2002, Ultrasound in medicine & biology.

[47]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[48]  Jerry Westerweel,et al.  In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. , 2006, Journal of biomechanics.

[49]  Michael W. Jenkins,et al.  Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser. , 2007, Optics express.

[50]  Michael W. Jenkins,et al.  4D embryonic cardiography using gated optical coherence tomography. , 2006, Optics express.

[51]  A Fenster,et al.  A high-resolution XRII-based quantitative volume CT scanner. , 1993, Medical physics.

[52]  G Allan Johnson,et al.  4-D Micro-CT of the Mouse Heart , 2005, Molecular imaging.

[53]  V. Hamburger,et al.  A series of normal stages in the development of the chick embryo. 1951. , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.