Incipient metal and sulfur extraction during melting of metasomatised mantle

[1]  W. Griffin,et al.  Lithospheric memory of subduction in mantle pyroxenite xenoliths from rift-related basalts , 2020 .

[2]  E. al.,et al.  Elevated magma fluxes deliver high-Cu magmas to the upper crust , 2020, Geology.

[3]  Bo Wei,et al.  Magma oxygen fugacity of Permian to Triassic Ni-Cu sulfide-bearing mafic-ultramafic intrusions in the central Asian orogenic belt, North China , 2019, Journal of Asian Earth Sciences.

[4]  J. Richards,et al.  Platinum-Group Element Geochemistry of the Escondida Igneous Suites, Northern Chile: Implications for Ore Formation , 2019, Journal of Petrology.

[5]  W. Griffin,et al.  Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting , 2018, Geology.

[6]  J. Brugger,et al.  Garnet peridotites reveal spatial and temporal changes in the oxidation potential of subduction , 2018, Scientific Reports.

[7]  S. Kay,et al.  Chalcophile element fertility and the formation of porphyry Cu ± Au deposits , 2018, Mineralium Deposita.

[8]  A. Tomkins,et al.  Sulfur isotope and PGE systematics of metasomatised mantle wedge , 2018, Earth and Planetary Science Letters.

[9]  M. Wilke,et al.  Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas , 2018, Nature Communications.

[10]  W. Griffin,et al.  Tracking Deep Lithospheric Events with Garnet-Websterite Xenoliths from Southeastern Australia , 2018 .

[11]  G. Mallmann,et al.  A re-assessment of the oxidation state of iron in MORB glasses , 2018 .

[12]  M. Schmidt,et al.  The global systematics of primitive arc melts , 2017 .

[13]  Cin-Ty A. Lee,et al.  Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study , 2017 .

[14]  W. Griffin,et al.  Uplift of the southeastern Australian lithosphere: Thermal-tectonic evolution of garnet pyroxenite xenoliths from western Victoria , 2017 .

[15]  B. Wood,et al.  The S content of silicate melts at sulfide saturation: New experiments and a model incorporating the effects of sulfide composition , 2017 .

[16]  R. Cas,et al.  The dynamics of a very large intra-plate continental basaltic volcanic province, the Newer Volcanics Province, SE Australia, and implications for other provinces , 2016, Special Publications.

[17]  T. Grove,et al.  Controls on the stability and composition of amphibole in the Earth’s mantle , 2016, Contributions to Mineralogy and Petrology.

[18]  J. Blundy,et al.  The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits , 2016, Contributions to Mineralogy and Petrology.

[19]  J. Richards The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny , 2015 .

[20]  R. Cas,et al.  Polymagmatic Activity at the Monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia: New Insights into the Occurrence of Intraplate Volcanic Activity in Australia , 2014 .

[21]  L. A. Coogan,et al.  Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces , 2014 .

[22]  R. Fonseca,et al.  Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides , 2013, Mineralium Deposita.

[23]  A. Tomkins,et al.  Magmatic Sulfide Formation by Reduction of Oxidized Arc Basalt , 2012 .

[24]  T. Grove,et al.  The Role of H 2 O in Subduction Zone Magmatism , 2012 .

[25]  A. Tomkins,et al.  The relationship between subduction zone redox budget and arc magma fertility , 2011 .

[26]  F. Albarède,et al.  The redox state of arc mantle using Zn/Fe systematics , 2010, Nature.

[27]  J. Mavrogenes,et al.  The Magnetite Crisis in the Evolution of Arc-related Magmas and the Initial Concentration of Au, Ag and Cu , 2010 .

[28]  F. Langenhorst,et al.  The oxidation state of mantle wedge majoritic garnet websterites metasomatised by C-bearing subduction fluids , 2010 .

[29]  T. Pettke,et al.  The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions , 2010 .

[30]  M. Wilke,et al.  Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity , 2010 .

[31]  Elizabeth Cottrell,et al.  Water and the Oxidation State of Subduction Zone Magmas , 2009, Science.

[32]  Jeremy P. Richards,et al.  Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere , 2009 .

[33]  J. Richards,et al.  Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis , 2007 .

[34]  C. J. Wilson,et al.  Evolution of a reworked orogenic zone: The boundary between the delamerian and lachlan fold belts, southeastern Australia , 2005 .

[35]  Cin-Ty A. Lee,et al.  Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions , 2005 .

[36]  W. Griffin,et al.  Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit , 2004 .

[37]  R. Hoblitt,et al.  Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines , 2004 .

[38]  J. Mungall Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits , 2002 .

[39]  P. Betts,et al.  Evolution of the Australian lithosphere , 2002 .

[40]  J. Mavrogenes,et al.  The Sulfide Capacity and the Sulfur Content at Sulfide Saturation of Silicate Melts at 1400°C and 1 bar , 2002 .

[41]  A. Klügel,et al.  The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral – melt reaction , 2002 .

[42]  Alan J. Wilson,et al.  Porphyry gold–copper mineralisation in the Cadia district, eastern Lachlan Fold Belt, New South Wales, and its relationship to shoshonitic magmatism , 2002 .

[43]  Evans,et al.  Osmium isotope constraints on ore metal recycling in subduction zones , 1999, Science.

[44]  G. Yaxley,et al.  In situ origin for glass in mantle xenoliths from southeastern Australia: insights from trace element compositions of glasses and metasomatic phases , 1999 .

[45]  J. Mavrogenes,et al.  THE RELATIVE EFFECTS OF PRESSURE, TEMPERATURE AND OXYGEN FUGACITY ON THE SOLUBILITY OF SULFIDE IN MAFIC MAGMAS , 1999 .

[46]  D. Müller,et al.  The shoshonite porphyry Cu-Au association at Bajo de la Alumbrera, Catamarca Province, Argentina , 1998 .

[47]  D. Green,et al.  Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes , 1997 .

[48]  I. Nicholls,et al.  Multistage evolution of Australian subcontinental mantle: Re-Os isotopic constraints from Victorian mantle xenoliths , 1996 .

[49]  H. O’Neill,et al.  Distribution of Ferric Iron in some Upper-Mantle Assemblages , 1996 .

[50]  N. Rogers,et al.  Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts , 1996 .

[51]  S. Nakada,et al.  Manner of magma ascent at Unzen Volcano (Japan) , 1995 .

[52]  D. Groves,et al.  The shoshonite porphyry Cu-Au association in the Goonumbla District, N.S.W., Australia , 1994 .

[53]  E. M. Cameron,et al.  Carbonated, alkaline hybridizing melts from a sub-arc environment: mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. , 1994 .

[54]  D. Groves,et al.  Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits , 1993 .

[55]  S. Foley Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas , 1992 .

[56]  I. Carmichael,et al.  The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states , 1991 .

[57]  R. Bodnar,et al.  Can economic porphyry copper mineralization be generated by a typical calc‐alkaline melt? , 1991 .

[58]  R. Keays,et al.  Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting , 1990 .

[59]  W. Griffin,et al.  Mantle metasomatism beneath western Victoria, Australia. II. Isotopic geochemistry of Cr-diopside lherzolites and Al-augite pyroxenites , 1988 .

[60]  W. Griffin,et al.  Mantle metasomatism beneath western Victoria, Australia. I. Metasomatic processes in Cr-diopside lherzolites , 1988 .

[61]  W. Griffin,et al.  Ultramafic xenoliths from Bullenmerri and Gnotuk Maars, Victoria, Australia: Petrology of a sub-continental crust-mantle transition , 1984 .

[62]  A. J. Naldrett,et al.  The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides , 1979 .

[63]  D. Green,et al.  The mineralogy, geochemistry and origin of Iherzolite inclusions in Victorian basanites , 1974 .

[64]  Cin-Ty A. Lee,et al.  How to make porphyry copper deposits , 2020 .

[65]  J. Brugger,et al.  Evidence of sub-arc mantle oxidation by sulphur and carbon , 2017 .

[66]  M. Chiaradia Copper enrichment in arc magmas controlled by overriding plate thickness , 2014 .

[67]  Keith Putirka,et al.  Thermometers and Barometers for Volcanic Systems , 2008 .

[68]  P. Jian,et al.  Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization , 2006 .

[69]  M. Hannington,et al.  Comparison between magmatic activity and gold mineralization at Conical Seamount and Lihir Island, Papua New Guinea , 2003 .

[70]  R. Berry,et al.  High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle , 1991 .

[71]  A. Stolz,et al.  Chemical and Isotopic Evidence from Spinel Lherzolite Xenoliths for Episodic Metasomatism of the Upper Mantle beneath Southeast Australia , 1988 .