暂无分享,去创建一个
[1] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[2] A. Krall. Applied Analysis , 1986 .
[3] M. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .
[4] David Alan Drabold,et al. Maximum entropy approach for linear scaling in the electronic structure problem. , 1993, Physical review letters.
[5] Wang,et al. Calculating the density of states and optical-absorption spectra of large quantum systems by the plane-wave moments method. , 1994, Physical review. B, Condensed matter.
[6] R. Silver,et al. DENSITIES OF STATES OF MEGA-DIMENSIONAL HAMILTONIAN MATRICES , 1994 .
[7] G. A. Parker,et al. Matrix pseudo-spectroscopy: iterative calculation of matrix eigenvalues and eigenvectors of large matrices using a polynomial expansion of the Dirac delta function , 1996 .
[8] A. Voter,et al. Kernel Polynomial Approximations for Densities of States and Spectral Functions , 1996 .
[9] R. Silver,et al. Kernel polynomial method for a nonorthogonal electronic-structure calculation of amorphous diamond , 1997 .
[10] Antonio Hervas Jorge,et al. Complements de mathemàtiques , 1997 .
[11] Laurent O. Jay,et al. ELECTRONIC STRUCTURE CALCULATIONS IN PLANE-WAVE CODES WITHOUT DIAGONALIZATION , 2007 .
[12] T. J. Rivlin. An Introduction to the Approximation of Functions , 2003 .
[13] T. Sakurai,et al. A projection method for generalized eigenvalue problems using numerical integration , 2003 .
[14] T. Iitaka,et al. Random phase vector for calculating the trace of a large matrix. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] Valeria Simoncini,et al. Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..
[16] Yousef Saad,et al. Filtered Conjugate Residual-type Algorithms with Applications , 2006, SIAM J. Matrix Anal. Appl..
[17] Timothy A. Davis,et al. Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.
[18] Y. Saad,et al. An estimator for the diagonal of a matrix , 2007 .
[19] Eric Polizzi,et al. A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.
[20] Z. Bai,et al. A METHOD FOR PROFILING THE DISTRIBUTION OF EIGENVALUES USING THE AS METHOD , 2010 .
[21] Tetsuya Sakurai,et al. Parallel stochastic estimation method of eigenvalue distribution , 2010, JSIAM Lett..
[22] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[23] Michael W. Mahoney. Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..
[24] Y. Saad. Numerical Methods for Large Eigenvalue Problems , 2011 .
[25] Tetsuya Sakurai,et al. Stochastic estimation method of eigenvalue density for nonlinear eigenvalue problem on the complex plane , 2011, JSIAM Lett..
[26] Y. Saad,et al. Numerical Methods for Large Eigenvalue Problems , 2011 .
[27] Sivan Toledo,et al. Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix , 2011, JACM.
[28] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[29] Yousef Saad,et al. A spectrum slicing method for the Kohn-Sham problem , 2012, Comput. Phys. Commun..
[30] Eric Polizzi,et al. A High-Performance Numerical Library for Solving Eigenvalue Problems: FEAST Solver v2.0 User's Guide , 2012, ArXiv.
[31] Yousef Saad,et al. A Probing Method for Computing the Diagonal of the Matrix Inverse ∗ , 2010 .
[32] S. Laux. Solving complex band structure problems with the FEAST eigenvalue algorithm , 2012 .
[33] Ping Tak Peter Tang,et al. Subspace Iteration with Approximate Spectral Projection , 2013, ArXiv.
[34] Lukas Krämer,et al. Dissecting the FEAST algorithm for generalized eigenproblems , 2012, J. Comput. Appl. Math..
[35] Ping Tak Peter Tang,et al. FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..
[36] Peng Zhang,et al. Optimal Query Complexity for Estimating the Trace of a Matrix , 2014, ICALP.
[37] Uri M. Ascher,et al. Improved Bounds on Sample Size for Implicit Matrix Trace Estimators , 2013, Found. Comput. Math..
[38] Yousef Saad,et al. Approximating Spectral Densities of Large Matrices , 2013, SIAM Rev..