Efficient estimation of eigenvalue counts in an interval

Estimating the number of eigenvalues located in a given interval of a large sparse Hermitian matrix is an important problem in certain applications, and it is a prerequisite of eigensolvers based on a divide‐and‐conquer paradigm. Often, an exact count is not necessary, and methods based on stochastic estimates can be utilized to yield rough approximations. This paper examines a number of techniques tailored to this specific task. It reviews standard approaches and explores new ones based on polynomial and rational approximation filtering combined with a stochastic procedure. We also discuss how the latter method is particularly well‐suited for the FEAST eigensolver. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[2]  A. Krall Applied Analysis , 1986 .

[3]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[4]  David Alan Drabold,et al.  Maximum entropy approach for linear scaling in the electronic structure problem. , 1993, Physical review letters.

[5]  Wang Calculating the density of states and optical-absorption spectra of large quantum systems by the plane-wave moments method. , 1994, Physical review. B, Condensed matter.

[6]  R. Silver,et al.  DENSITIES OF STATES OF MEGA-DIMENSIONAL HAMILTONIAN MATRICES , 1994 .

[7]  G. A. Parker,et al.  Matrix pseudo-spectroscopy: iterative calculation of matrix eigenvalues and eigenvectors of large matrices using a polynomial expansion of the Dirac delta function , 1996 .

[8]  A. Voter,et al.  Kernel Polynomial Approximations for Densities of States and Spectral Functions , 1996 .

[9]  R. Silver,et al.  Kernel polynomial method for a nonorthogonal electronic-structure calculation of amorphous diamond , 1997 .

[10]  Antonio Hervas Jorge,et al.  Complements de mathemàtiques , 1997 .

[11]  Y. Saad,et al.  Electronic structure calculations for plane-wave codes without diagonalization , 1999 .

[12]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[13]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[14]  T. Iitaka,et al.  Random phase vector for calculating the trace of a large matrix. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Valeria Simoncini,et al.  Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..

[16]  Yousef Saad,et al.  Filtered Conjugate Residual-type Algorithms with Applications , 2006, SIAM J. Matrix Anal. Appl..

[17]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[18]  Y. Saad,et al.  An estimator for the diagonal of a matrix , 2007 .

[19]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[20]  Z. Bai,et al.  A METHOD FOR PROFILING THE DISTRIBUTION OF EIGENVALUES USING THE AS METHOD , 2010 .

[21]  Tetsuya Sakurai,et al.  Parallel stochastic estimation method of eigenvalue distribution , 2010, JSIAM Lett..

[22]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[23]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[24]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[25]  Tetsuya Sakurai,et al.  Stochastic estimation method of eigenvalue density for nonlinear eigenvalue problem on the complex plane , 2011, JSIAM Lett..

[26]  Y. Saad,et al.  Numerical Methods for Large Eigenvalue Problems , 2011 .

[27]  Sivan Toledo,et al.  Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix , 2011, JACM.

[28]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[29]  Yousef Saad,et al.  A spectrum slicing method for the Kohn-Sham problem , 2012, Comput. Phys. Commun..

[30]  Eric Polizzi,et al.  A High-Performance Numerical Library for Solving Eigenvalue Problems: FEAST Solver v2.0 User's Guide , 2012, ArXiv.

[31]  Yousef Saad,et al.  A Probing Method for Computing the Diagonal of the Matrix Inverse ∗ , 2010 .

[32]  S. Laux Solving complex band structure problems with the FEAST eigenvalue algorithm , 2012 .

[33]  Ping Tak Peter Tang,et al.  Subspace Iteration with Approximate Spectral Projection , 2013, ArXiv.

[34]  Lukas Krämer,et al.  Dissecting the FEAST algorithm for generalized eigenproblems , 2012, J. Comput. Appl. Math..

[35]  Ping Tak Peter Tang,et al.  FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..

[36]  Peng Zhang,et al.  Optimal Query Complexity for Estimating the Trace of a Matrix , 2014, ICALP.

[37]  Uri M. Ascher,et al.  Improved Bounds on Sample Size for Implicit Matrix Trace Estimators , 2013, Found. Comput. Math..

[38]  Yousef Saad,et al.  Approximating Spectral Densities of Large Matrices , 2013, SIAM Rev..