Axonemal motility in Chlamydomonas.

[1]  K. Wakabayashi,et al.  Reduction-oxidation poise regulates the sign of phototaxis in Chlamydomonas reinhardtii , 2011, Proceedings of the National Academy of Sciences.

[2]  Yehuda Ben-Shahar,et al.  Motile Cilia of Human Airway Epithelia Are Chemosensory , 2009, Science.

[3]  Kenji Kikushima Central pair apparatus enhances outer-arm dynein activities through regulation of inner-arm dyneins. , 2009, Cell motility and the cytoskeleton.

[4]  M. Sanderson,et al.  TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells , 2008, Proceedings of the National Academy of Sciences.

[5]  S. King,et al.  Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise , 2006, The Journal of cell biology.

[6]  M. Hirono,et al.  An Axonemal Dynein Particularly Important for Flagellar Movement at High Viscosity , 2005, Journal of Biological Chemistry.

[7]  M. Hirono,et al.  Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein , 2005, Journal of Cell Science.

[8]  Chikako Shingyoji,et al.  Effects of Imposed Bending on Microtubule Sliding in Sperm Flagella , 2004, Current Biology.

[9]  M. Wargo,et al.  Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Kamiya Analysis of cell vibration for assessing axonemal motility in Chlamydomonas. , 2000, Methods.

[11]  C Shingyoji,et al.  Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella. , 2000, Journal of cell science.

[12]  W. Sale,et al.  Regulation of Flagellar Dynein by Phosphorylation of a 138-kD Inner Arm Dynein Intermediate Chain , 1997, The Journal of cell biology.

[13]  W. Sale,et al.  Regulation of dynein-driven microtubule sliding by the radial spokes in flagella. , 1992, Science.

[14]  R. Kamiya,et al.  Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii. , 1987, Experimental cell research.

[15]  R. Kamiya,et al.  Microtubule sliding in mutant Chlamydomonas axonemes devoid of outer or inner dynein arms , 1986, The Journal of cell biology.

[16]  I. Gibbons Transient flagellar waveforms in reactivated sea urchin sperm , 1986, Journal of Muscle Research & Cell Motility.

[17]  G. Witman,et al.  Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas , 1984, The Journal of cell biology.

[18]  R. Lewin,et al.  Another new kind ofChlamydomonas mutant, with impaired flagellar autotomy , 1983, Experientia.

[19]  S. Dutcher,et al.  Uniflagellar mutants of chlamydomonas: Evidence for the role of basal bodies in transmission of positional information , 1982, Cell.

[20]  S. Dutcher,et al.  Analysis of the movement of Chlamydomonas flagella:" the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella , 1982, The Journal of cell biology.

[21]  Keiichi Takahashi,et al.  Direct measurement of the force of microtubule sliding in flagella , 1981, Nature.

[22]  T. Miki-Noumura,et al.  Recovery of sliding ability in arm-depleted flagellar axonemes after recombination with extracted dynein I. , 1981, Journal of cell science.

[23]  M. Bessen,et al.  Calcium control of waveform in isolated flagellar axonemes of chlamydomonas , 1980, The Journal of cell biology.

[24]  C. Brokaw Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella , 1979, The Journal of cell biology.

[25]  H. Berg,et al.  Movement of microorganisms in viscous environments , 1979, Nature.

[26]  G. Witman,et al.  Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components , 1978, The Journal of cell biology.

[27]  H Machemer,et al.  Ciliary activity and the origin of metachrony in Paramecium: effects of increased viscosity. , 1972, The Journal of experimental biology.

[28]  I. Gibbons,et al.  FLAGELLAR MOVEMENT AND ADENOSINE TRIPHOSPHATASE ACTIVITY IN SEA URCHIN SPERM EXTRACTED WITH TRITON X-100 , 1972, The Journal of cell biology.

[29]  Y. Naitoh,et al.  Reactivated Triton-Extracted Models of Paramecium: Modification of Ciliary Movement by Calcium Ions , 1972, Science.

[30]  I. Gibbons,et al.  Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Eckert,et al.  Ionic Mechanisms Controlling Behavioral Responses of Paramecium to Mechanical Stimulation , 1969, Science.

[32]  P. Satir STUDIES ON CILIA , 1968, The Journal of cell biology.

[33]  A. Szent-Gyorgyi Free-energy relations and contraction of actomyosin. , 1949, The Biological bulletin.

[34]  R. Kamiya Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. , 2002, International review of cytology.

[35]  K. Wakabayashi,et al.  Ca2+-dependent waveform conversion in the flagellar axoneme of Chlamydomonas mutants lacking the central-pair/radial spoke system. , 1997, Cell motility and the cytoskeleton.

[36]  E. Kurimoto,et al.  Ability of paralyzed flagella mutants of Chlamydomonas to move. , 1996, Cell motility and the cytoskeleton.

[37]  R. Kamiya,et al.  Strikingly different propulsive forces generated by different dynein-deficient mutants in viscous media. , 1995, Cell motility and the cytoskeleton.

[38]  W. Sale,et al.  Regulation of dynein-driven microtubule sliding by an axonemal kinase and phosphatase in Chlamydomonas flagella. , 1995, Cell motility and the cytoskeleton.

[39]  E. Kurimoto,et al.  Microtubule sliding in flagellar axonemes of Chlamydomonas mutants missing inner- or outer-arm dynein: velocity measurements on new types of mutants by an improved method. , 1991, Cell motility and the cytoskeleton.

[40]  C. Brokaw,et al.  Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. , 1987, Cell motility and the cytoskeleton.

[41]  S. Asakura,et al.  Stimulation of in vitro motility of Chlamydomonas axonemes by inhibition of cAMP-dependent phosphorylation. , 1987, Cell motility and the cytoskeleton.

[42]  H. Hoffman-Berling Adenosintriphosphat als betriebsstoff von zellbewegungen , 1954 .