Tunable optical properties of multilayer black phosphorus thin films

Black phosphorus thin films might offer attractive alternatives to narrow gap compound semiconductors for optoelectronics across mid- to near-infrared frequencies. In this work, we calculate the optical conductivity tensor of multilayer black phosphorus thin films using the Kubo formula within an effective low-energy Hamiltonian. The optical absorption spectra of multilayer black phosphorus are shown to vary sensitively with thickness, doping, and light polarization. In conjunction with experimental spectra obtained from infrared absorption spectroscopy, we also discuss the role of interband coupling and disorder on the observed anisotropic absorption spectra.

[1]  Rostislav A. Doganov,et al.  Electric field effect in ultrathin black phosphorus , 2014, 1402.5718.

[2]  R. Soklaski,et al.  Layer-Controlled Band Gap and Anisotropic Excitons in Phosphorene , 2014, 1402.4192.

[3]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[4]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[5]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[6]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[7]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[8]  S. Sarma,et al.  Electronic transport in two-dimensional graphene , 2010, 1003.4731.

[9]  J. Misewich,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[10]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[11]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[12]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Chang,et al.  Structural stability of phases of black phosphorus. , 1986, Physical review. B, Condensed matter.

[14]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[15]  Suzuki,et al.  Angle-resolved photoemission study of black phosphorus: Interlayer energy dispersion. , 1986, Physical review. B, Condensed matter.

[16]  Y. Akahama,et al.  Far-Infrared Cyclotron Resonance Absorptions in Black Phosphorus Single Crystals , 1983 .

[17]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[18]  Douglas M. Warschauer,et al.  Electrical and Optical Properties of Crystalline Black Phosphorus , 1963 .

[19]  J. C. Jamieson Crystal Structures Adopted by Black Phosphorus at High Pressures , 1963, Science.

[20]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[21]  P. Wallace The Band Theory of Graphite , 1947 .

[22]  Xianfan Xu,et al.  Phosphorene: An Unexplored 2D Semiconductor with a High Hole , 2014 .

[23]  Iroon Polytechniou Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .

[24]  Alexander Kolin Proceedings of the NATiONAL ACADEMY OF SCIENCES , 2004 .

[25]  and as an in , 2022 .