Variational Bayesian functional PCA
暂无分享,去创建一个
[1] P. Hall,et al. Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.
[2] Ana M. Aguilera,et al. Forecasting time series by functional PCA. Discussion of several weighted approaches , 1999, Comput. Stat..
[3] Ana M. Aguilera,et al. Forecasting PC-ARIMA Models for Functional Data , 2002, COMPSTAT.
[4] Ana M. Aguilera,et al. AN APPROXIMATED PRINCIPAL COMPONENT PREDICTION MODEL FOR CONTINUOUS-TIME STOCHASTIC PROCESSES , 1997 .
[5] Models for Multivariate Data Analysis , 1994 .
[6] Neil H. Timm,et al. Multivariate Reduced-Rank Regression , 1999, Technometrics.
[7] G. Wahba. Spline models for observational data , 1990 .
[8] Hans-Georg Müller,et al. Classification using functional data analysis for temporal gene expression data , 2006, Bioinform..
[9] H. Muller,et al. Generalized functional linear models , 2005, math/0505638.
[10] A. M. Aguilera,et al. Principal component estimation of functional logistic regression: discussion of two different approaches , 2004 .
[11] A. M. Aguilera,et al. Modeling environmental data by functional principal component logistic regression , 2005 .
[12] F. Yao,et al. Penalized spline models for functional principal component analysis , 2006 .
[13] H. Müller,et al. Functional Data Analysis for Sparse Longitudinal Data , 2005 .
[14] P. Sarda,et al. SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .
[15] Neil D. Lawrence,et al. Variational inference for Student-t models: Robust Bayesian interpolation and generalised component analysis , 2005, Neurocomputing.
[16] Ana M. Aguilera,et al. Forecasting with unequally spaced data by a functional principal component approach , 1999 .
[17] B. Bakshi,et al. Bayesian principal component analysis , 2002 .
[18] R. A. Choudrey. FLEXIBLE BAYESIAN INDEPENDENT COMPONENT ANALYSIS FOR BLIND SOURCE SEPARATION , 2001 .
[19] Hagai Attias,et al. Independent Factor Analysis , 1999, Neural Computation.
[20] Zhihua Zhang,et al. Bayesian Inference on Principal Component Analysis Using Reversible Jump Markov Chain Monte Carlo , 2004, AAAI.
[21] John A. Rice,et al. Displaying the important features of large collections of similar curves , 1992 .
[22] Xin Zhao,et al. The functional data analysis view of longitudinal data , 2004 .
[23] Václav Smídl,et al. On Bayesian principal component analysis , 2007, Comput. Stat. Data Anal..
[24] A. Linde. PCA-based dimension reduction for splines , 2003 .
[25] Michael A. West,et al. BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .
[26] J. Dauxois,et al. Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .
[27] Linear methods for regression and classification with functional data , 2007 .
[28] Simon J. Godsill,et al. Blind Separation of Sparse Sources Using Jeffrey's Inverse Prior and the EM Algorithm , 2006, ICA.
[29] Bernard W. Silverman,et al. Incorporating parametric effects into functional principal components analysis , 1995 .
[30] Christopher M. Bishop,et al. Bayesian PCA , 1998, NIPS.
[31] Claude Manté,et al. Principal component analysis of measures, with special emphasis on grain-size curves , 2007, Comput. Stat. Data Anal..
[32] P. R. Bouzas,et al. Functional approach to the random mean of a compound Cox process , 2007, Comput. Stat..
[33] Philippe Besse,et al. Simultaneous non-parametric regressions of unbalanced longitudinal data , 1997 .
[34] A. Linde,et al. Splines from a Bayesian point of view , 1995 .
[35] Thomas A. Louis,et al. Modeling the Labeling Index Distribution: An Application of Functional Data Analysis , 1995 .
[36] Mariano J. Valderrama,et al. An overview to modelling functional data , 2007, Comput. Stat..
[37] Tom Minka,et al. Automatic Choice of Dimensionality for PCA , 2000, NIPS.
[38] Rob J. Hyndman,et al. Robust forecasting of mortality and fertility rates: A functional data approach , 2007, Comput. Stat. Data Anal..
[39] Ana M. Aguilera,et al. Stochastic modelling for evolution of stock prices by means of functional principal component analysis , 1999 .
[40] Ana M. Aguilera,et al. Modelling the mean of a doubly stochastic Poisson process by functional data analysis , 2006, Comput. Stat. Data Anal..
[41] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[42] H. Cardot. Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .
[43] Ana M. Aguilera,et al. Forecasting binary longitudinal data by a functional PC-ARIMA model , 2008, Comput. Stat. Data Anal..
[44] Jeng-Min Chiou,et al. Diagnostics for functional regression via residual processes , 2007, Comput. Stat. Data Anal..
[45] Simon J. Godsill,et al. Variational and stochastic inference for Bayesian source separation , 2007, Digit. Signal Process..
[46] Catherine A. Sugar,et al. Principal component models for sparse functional data , 1999 .
[47] Ana M. Aguilera,et al. Computational considerations in functional principal component analysis , 2007, Comput. Stat..
[48] B. Silverman,et al. Smoothed functional principal components analysis by choice of norm , 1996 .
[49] A. U.S.,et al. Hierarchical Models for Assessing Variability among Functions , 2005 .
[50] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[51] Bo Wang,et al. Convergence and Asymptotic Normality of Variational Bayesian Approximations for Expon , 2004, UAI.
[52] Angelika van der Linde. Estimating the smoothing parameter in generalized spline-based regression , 2001, Comput. Stat..
[53] Badih Ghattas,et al. Classifying densities using functional regression trees: Applications in oceanology , 2007, Comput. Stat. Data Anal..
[54] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[55] James O. Ramsay,et al. Applied Functional Data Analysis: Methods and Case Studies , 2002 .
[56] Ana M. Aguilera,et al. Functional Principal Components Analysis by Choice of Norm , 1999 .
[57] Angelika van der Linde. Estimating the smoothing parameter in generalized spline-based regression , 2001, Comput. Stat..
[58] K. J. Utikal,et al. Inference for Density Families Using Functional Principal Component Analysis , 2001 .
[59] Sd Pezzulli,et al. Some properties of smoothed principal components analysis for functional data , 1993 .
[60] Daniel Gervini,et al. Free‐knot spline smoothing for functional data , 2006 .
[61] R. M. Fernández-Alcalá,et al. Functional estimation incorporating prior correlation information , 2007, Comput. Stat..
[62] E. Ziegel,et al. Proceedings in Computational Statistics , 1998 .
[63] Wenceslao González-Manteiga,et al. Statistics for Functional Data , 2007, Comput. Stat. Data Anal..
[64] Ana M. Aguilera,et al. Using principal components for estimating logistic regression with high-dimensional multicollinear data , 2006, Comput. Stat. Data Anal..
[65] R. Fraiman,et al. Kernel-based functional principal components ( , 2000 .
[66] Charles M. Bishop. Variational principal components , 1999 .
[67] Ana M. Aguilera,et al. Functional PLS logit regression model , 2007, Comput. Stat. Data Anal..
[68] Hans-Georg Ller,et al. Functional Modelling and Classification of Longitudinal Data. , 2005 .
[69] John A. Rice,et al. FUNCTIONAL AND LONGITUDINAL DATA ANALYSIS: PERSPECTIVES ON SMOOTHING , 2004 .