Pattern Size in Gaussian Fields from Spinodal Decomposition
暂无分享,去创建一个
[1] Thomas Wanner,et al. Maximum norms of random sums and transient pattern formation , 2003 .
[2] Thomas Wanner,et al. Spinodal Decomposition for the Cahn–Hilliard Equation in Higher Dimensions.¶Part I: Probability and Wavelength Estimate , 1998 .
[3] M. Cross,et al. Pattern formation outside of equilibrium , 1993 .
[4] C. Caramanis. What is ergodic theory , 1963 .
[5] RICHARD TATUM. PATTERN FORMATION IN A MIXED LOCAL AND NONLOCAL REACTION-DIFFUSION SYSTEM , 2012 .
[6] M. Longuet-Higgins. The statistical analysis of a random, moving surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[7] S. Maier-Paape,et al. Pattern formation below criticality forced by noise , 2003 .
[8] Evelyn Sander,et al. Unexpectedly Linear Behavior for the Cahn-Hilliard Equation , 2000, SIAM J. Appl. Math..
[9] M. Dennis,et al. Nodal densities of planar gaussian random waves , 2007 .
[10] A. M. Walker. Statistical Analysis of a Random, Moving Surface , 1957, Nature.
[11] Dirk Blömker,et al. Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .
[12] A. Gorodnik,et al. The Ergodic Theory of Lattice Subgroups , 2006, math/0605596.
[13] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[14] Thomas Wanner,et al. Spinodal Decomposition for the¶Cahn-Hilliard Equation in Higher Dimensions:¶Nonlinear Dynamics , 2000 .
[15] R. Adler,et al. Random Fields and Geometry , 2007 .
[16] Konstantin Mischaikow,et al. Probabilistic and numerical validation of homology computations for nodal domains , 2007 .
[17] Dirk Blömker,et al. Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .
[18] Konstantin Mischaikow,et al. Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation , 2005 .
[19] Robert J. Adler,et al. Topological complexity of smooth random functions , 2011 .
[20] Maarten B. Eppinga,et al. Beyond Turing: The response of patterned ecosystems to environmental change , 2014 .
[21] William D. Kalies,et al. Verified Homology Computations for Nodal Domains , 2009, Multiscale Model. Simul..
[22] Dirk Blömker,et al. Stochastic PDEs and Lack of Regularity , 2015 .
[23] Alan Edelman,et al. How many zeros of a random polynomial are real , 1995 .
[24] H. E. Cook,et al. Brownian motion in spinodal decomposition , 1970 .
[25] A. Doelman,et al. Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. , 2015, Chaos.
[26] Luis Vázquez,et al. Observation and modeling of interrupted pattern coarsening: surface nanostructuring by ion erosion. , 2010, Physical review letters.
[27] Paul Nicholas,et al. Pattern in(formation) , 2012 .
[28] T. Wanner,et al. Pattern formation in a nonlinear model for animal coats , 2003 .
[29] John W. Cahn,et al. Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .
[30] École d'été de probabilités de Saint-Flour,et al. Topological Complexity of Smooth Random Functions: École d'Été de Probabilités de Saint-Flour XXXIX-2009 , 2011 .
[31] B. M. Fulk. MATH , 1992 .
[32] J. R. Baxter,et al. Weighted and subsequential ergodic theorems , 1983 .
[33] Ronald H. W. Hoppe,et al. A combined spectral element/finite element approach to the numerical solution of a nonlinear evolution equation describing amorphous surface growth of thin films , 2002, J. Num. Math..
[34] Gordon Pledger,et al. On the mean ergodic theorem for weighted averages , 1969 .
[35] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[36] Amos Nevo,et al. Quantitative ergodic theorems and their number-theoretic applications , 2013, 1304.6847.
[37] M. Longuet-Higgins. Statistical properties of an isotropic random surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[38] P Hänggi,et al. Amorphous thin film growth: effects of density inhomogeneities. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[39] S. O. Rice,et al. Statistical properties of a sine wave plus random noise , 1948, Bell Syst. Tech. J..
[40] V. Losert,et al. The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences , 1985 .
[41] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .
[42] Yan Guo,et al. Pattern formation (II): The Turing Instability , 2005, math/0510419.