Pattern Size in Gaussian Fields from Spinodal Decomposition

We study the two-dimensional snake-like pattern that arises at the onset of phase separation of alloys described by spinodal decomposition in the Cahn--Hilliard model. These are somewhat universal patterns due to an overlay of the most unstable pattern, which are eigenfunctions of the Laplacian all with a similar wave-number. Similar structures appear in other models like reaction-diffusion systems describing animal coats' patterns, hill formation in surface growth, or vegetation patterns in desertification. In order to study the early stages of spinodal decomposition we focus on the linearized equation. Our main result studies random functions given by cosine Fourier series with independent Gaussian coefficients, which dominate the dynamics in the Cahn--Hilliard model. This is not a cosine process, as the sum is taken over domains in Fourier space that not only grow and scale with a parameter of order $1/\varepsilon$ for a small $0<\varepsilon\ll1$, but also move to infinity for $\varepsilon\to0$. Moreov...

[1]  Thomas Wanner,et al.  Maximum norms of random sums and transient pattern formation , 2003 .

[2]  Thomas Wanner,et al.  Spinodal Decomposition for the Cahn–Hilliard Equation in Higher Dimensions.¶Part I: Probability and Wavelength Estimate , 1998 .

[3]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[4]  C. Caramanis What is ergodic theory , 1963 .

[5]  RICHARD TATUM PATTERN FORMATION IN A MIXED LOCAL AND NONLOCAL REACTION-DIFFUSION SYSTEM , 2012 .

[6]  M. Longuet-Higgins The statistical analysis of a random, moving surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  S. Maier-Paape,et al.  Pattern formation below criticality forced by noise , 2003 .

[8]  Evelyn Sander,et al.  Unexpectedly Linear Behavior for the Cahn-Hilliard Equation , 2000, SIAM J. Appl. Math..

[9]  M. Dennis,et al.  Nodal densities of planar gaussian random waves , 2007 .

[10]  A. M. Walker Statistical Analysis of a Random, Moving Surface , 1957, Nature.

[11]  Dirk Blömker,et al.  Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .

[12]  A. Gorodnik,et al.  The Ergodic Theory of Lattice Subgroups , 2006, math/0605596.

[13]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[14]  Thomas Wanner,et al.  Spinodal Decomposition for the¶Cahn-Hilliard Equation in Higher Dimensions:¶Nonlinear Dynamics , 2000 .

[15]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[16]  Konstantin Mischaikow,et al.  Probabilistic and numerical validation of homology computations for nodal domains , 2007 .

[17]  Dirk Blömker,et al.  Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .

[18]  Konstantin Mischaikow,et al.  Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation , 2005 .

[19]  Robert J. Adler,et al.  Topological complexity of smooth random functions , 2011 .

[20]  Maarten B. Eppinga,et al.  Beyond Turing: The response of patterned ecosystems to environmental change , 2014 .

[21]  William D. Kalies,et al.  Verified Homology Computations for Nodal Domains , 2009, Multiscale Model. Simul..

[22]  Dirk Blömker,et al.  Stochastic PDEs and Lack of Regularity , 2015 .

[23]  Alan Edelman,et al.  How many zeros of a random polynomial are real , 1995 .

[24]  H. E. Cook,et al.  Brownian motion in spinodal decomposition , 1970 .

[25]  A. Doelman,et al.  Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. , 2015, Chaos.

[26]  Luis Vázquez,et al.  Observation and modeling of interrupted pattern coarsening: surface nanostructuring by ion erosion. , 2010, Physical review letters.

[27]  Paul Nicholas,et al.  Pattern in(formation) , 2012 .

[28]  T. Wanner,et al.  Pattern formation in a nonlinear model for animal coats , 2003 .

[29]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[30]  École d'été de probabilités de Saint-Flour,et al.  Topological Complexity of Smooth Random Functions: École d'Été de Probabilités de Saint-Flour XXXIX-2009 , 2011 .

[31]  B. M. Fulk MATH , 1992 .

[32]  J. R. Baxter,et al.  Weighted and subsequential ergodic theorems , 1983 .

[33]  Ronald H. W. Hoppe,et al.  A combined spectral element/finite element approach to the numerical solution of a nonlinear evolution equation describing amorphous surface growth of thin films , 2002, J. Num. Math..

[34]  Gordon Pledger,et al.  On the mean ergodic theorem for weighted averages , 1969 .

[35]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[36]  Amos Nevo,et al.  Quantitative ergodic theorems and their number-theoretic applications , 2013, 1304.6847.

[37]  M. Longuet-Higgins Statistical properties of an isotropic random surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[38]  P Hänggi,et al.  Amorphous thin film growth: effects of density inhomogeneities. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  S. O. Rice,et al.  Statistical properties of a sine wave plus random noise , 1948, Bell Syst. Tech. J..

[40]  V. Losert,et al.  The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences , 1985 .

[41]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[42]  Yan Guo,et al.  Pattern formation (II): The Turing Instability , 2005, math/0510419.