A Derivative Free Minimization Method For Noisy Functions

An unconstrained minimization method which is based on Powell's derivative free method is presented. The proposed method retains the termination properties of Powell's method and it can be successfully applied to problems with imprecise function values. The ability of this method to cope with imprecise or noisy problems is due to the fact that it proceeds solely by comparing the relative size of the function values. The method has been implemented and tested, and performance information is given.

[1]  Wilhelm Werner,et al.  On the accurate determination of nonisolated solutions of nonlinear equations , 1981, Computing.

[2]  Michael N. Vrahatis,et al.  A short proof and a generalization of Miranda’s existence theorem , 1989 .

[3]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[4]  R. Fletcher Practical Methods of Optimization , 1988 .

[5]  K. Sikorski Bisection is optimal , 1982 .

[6]  Michael N. Vrahatis,et al.  Solving systems of nonlinear equations using the nonzero value of the topological degree , 1988, TOMS.

[7]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[8]  Clemens Elster,et al.  A method of trust region type for minimizing noisy functions , 1997, Computing.

[9]  Willard I. Zangwill,et al.  Minimizing a function without calculating derivatives , 1967, Comput. J..

[10]  Michael N. Vrahatis,et al.  On the Localization and Computation of Zeros of Bessel Functions , 1997 .

[11]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[12]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[13]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[14]  M. N. Vrahatisa,et al.  A class of gradient unconstrained minimization algorithms with adaptive stepsize , 1999 .

[15]  John E. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991, SIAM J. Optim..

[16]  Virginia Torczon,et al.  On the Convergence of the Multidirectional Search Algorithm , 1991, SIAM J. Optim..

[17]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[18]  J. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991 .

[19]  Jorge Nocedal,et al.  Theory of algorithms for unconstrained optimization , 1992, Acta Numerica.

[20]  Baker Kearfott,et al.  An efficient degree-computation method for a generalized method of bisection , 1979 .

[21]  M. N. Vrahatis,et al.  A New Unconstrained Optimization Method for Imprecise Function and Gradient Values , 1996 .

[22]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[23]  M N Vrahatis,et al.  A rapid Generalized Method of Bisection for solving Systems of Non-linear Equations , 1986 .

[24]  A. Neumaier,et al.  A grid algorithm for bound constrained optimization of noisy functions , 1995 .

[25]  Michael N. Vrahatis,et al.  Locating and Computing Zeros of Airy Functions , 1996 .

[26]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[27]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[28]  Michael N. Vrahatis,et al.  Algorithm 666: Chabis: a mathematical software package for locating and evaluating roots of systems of nonlinear equations , 1988, TOMS.

[29]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .