From ants to whales: metaheuristics for all tastes

Nature-inspired metaheuristics comprise a compelling family of optimization techniques. These algorithms are designed with the idea of emulating some kind natural phenomena (such as the theory of evolution, the collective behavior of groups of animals, the laws of physics or the behavior and lifestyle of human beings) and applying them to solve complex problems. Nature-inspired methods have taken the area of mathematical optimization by storm. Only in the last few years, literature related to the development of this kind of techniques and their applications has experienced an unprecedented increase, with hundreds of new papers being published every single year. In this paper, we analyze some of the most popular nature-inspired optimization methods currently reported on the literature, while also discussing their applications for solving real-world problems and their impact on the current literature. Furthermore, we open discussion on several research gaps and areas of opportunity that are yet to be explored within this promising area of science.

[1]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[2]  Lakhmi C. Jain,et al.  Advances in Intelligent Information Hiding and Multimedia Signal Processing - Proceedings of the Thirteenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2017, August, 12-15, 2017, Matsue, Shimane, Japan, Part II , 2018, IIH-MSP.

[3]  Caro Lucas,et al.  Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition , 2007, 2007 IEEE Congress on Evolutionary Computation.

[4]  J. McCall,et al.  Genetic algorithms for modelling and optimisation , 2005 .

[5]  Palvinder Singh Mann,et al.  Improved metaheuristic based energy-efficient clustering protocol for wireless sensor networks , 2017, Eng. Appl. Artif. Intell..

[6]  Karol R. Opara,et al.  Differential Evolution: A survey of theoretical analyses , 2019, Swarm Evol. Comput..

[7]  Erik Valdemar Cuevas Jiménez,et al.  Parameter Estimation for Chaotic Fractional Systems by Using the Locust Search Algorithm , 2017, Computación y Sistemas.

[8]  Ivan Zelinka,et al.  Handbook of Optimization - From Classical to Modern Approach , 2012, Handbook of Optimization.

[9]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[10]  Sushama Nagpal,et al.  Feature Selection using Gravitational Search Algorithm for Biomedical Data , 2017 .

[11]  Francisco B. Pereira,et al.  Bio-inspired Algorithms for the Vehicle Routing Problem , 2008, Bio-inspired Algorithms for the Vehicle Routing Problem.

[12]  Satish Chandra,et al.  Multi-objective Grey Wolf Optimizer for improved cervix lesion classification , 2017, Appl. Soft Comput..

[13]  Frank Neumann,et al.  Bioinspired computation in combinatorial optimization: algorithms and their computational complexity , 2012, GECCO '12.

[14]  Yongquan Zhou,et al.  Sensor Deployment Scheme Based on Social Spider Optimization Algorithm for Wireless Sensor Networks , 2017, Neural Processing Letters.

[15]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[16]  Saurabh Chaudhury,et al.  Multilevel thresholding using grey wolf optimizer for image segmentation , 2017, Expert Syst. Appl..

[17]  Kok-Leong Ong,et al.  Feature selection for high dimensional imbalanced class data using harmony search , 2017, Eng. Appl. Artif. Intell..

[18]  Hossein Nezamabadi-pour,et al.  BGSA: binary gravitational search algorithm , 2010, Natural Computing.

[19]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[20]  Natalia Vila-López,et al.  Mature market segmentation: a comparison of artificial neural networks and traditional methods , 2010, Neural Computing and Applications.

[21]  Jean-Yves Potvin,et al.  A Review of Bio-inspired Algorithms for Vehicle Routing , 2009, Bio-inspired Algorithms for the Vehicle Routing Problem.

[22]  Carlos Eduardo Pereira,et al.  A Modified Simulated Annealing Algorithm for SUAVs Path Planning , 2015 .

[23]  Zhenzhen Zhang,et al.  A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints , 2018, Eur. J. Oper. Res..

[24]  S. Siva Sathya,et al.  A Survey of Bio inspired Optimization Algorithms , 2012 .

[25]  Feng Duan,et al.  Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization , 2018 .

[26]  Sonia Goyal,et al.  Performance of BAT Algorithm on Localization of Wireless Sensor Network , 2013, BIOINFORMATICS 2013.

[27]  Sotirios Goudos,et al.  Antenna Design Using Binary Differential Evolution: Application to discrete-valued design problems. , 2017, IEEE Antennas and Propagation Magazine.

[28]  A. N. Jadhav,et al.  WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering , 2017, Alexandria Engineering Journal.

[29]  Ivan Zelinka,et al.  A survey on evolutionary algorithms dynamics and its complexity - Mutual relations, past, present and future , 2015, Swarm Evol. Comput..

[30]  Adam P. Piotrowski,et al.  Searching for structural bias in particle swarm optimization and differential evolution algorithms , 2016, Swarm Intelligence.

[31]  Jerry L Prince,et al.  Assessment of distribution and evolution of Mechanical dyssynchrony in a porcine model of myocardial infarction by cardiovascular magnetic resonance , 2012, Journal of Cardiovascular Magnetic Resonance.

[32]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[33]  Riccardo Poli,et al.  Genetic Programming An Introductory Tutorial and a Survey of Techniques and Applications , 2011 .

[34]  Ardeshir Bahreininejad,et al.  Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems , 2012 .

[35]  Qingfu Zhang,et al.  A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems , 2016, J. Comput. Sci..

[36]  Kalyanmoy Deb,et al.  Differential evolution: Performances and analyses , 2013, 2013 IEEE Congress on Evolutionary Computation.

[37]  Erik Valdemar Cuevas Jiménez,et al.  An optimisation algorithm based on the behaviour of locust swarms , 2015, Int. J. Bio Inspired Comput..

[38]  Oscar Cordón,et al.  A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis , 2016, Appl. Soft Comput..

[39]  Songwei Huang,et al.  Modified firefly algorithm based multilevel thresholding for color image segmentation , 2017, Neurocomputing.

[40]  Rob A. Rutenbar,et al.  Simulated annealing algorithms: an overview , 1989, IEEE Circuits and Devices Magazine.

[41]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[42]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[43]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[44]  Moncef Gabbouj,et al.  Perceptual Dominant Color Extraction by Multidimensional Particle Swarm Optimization , 2010, EURASIP J. Adv. Signal Process..

[45]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[46]  Suash Deb,et al.  Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization , 2017, Neural Computing and Applications.

[47]  Adam P. Piotrowski,et al.  Some metaheuristics should be simplified , 2018, Inf. Sci..

[48]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[49]  C. K. M. Lee,et al.  An Improved Artificial Bee Colony Algorithm for the Capacitated Vehicle Routing Problem , 2015, 2015 IEEE International Conference on Systems, Man, and Cybernetics.

[50]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[51]  Xin-She Yang,et al.  Metaheuristic Optimization: Algorithm Analysis and Open Problems , 2011, SEA.

[52]  Li Pei,et al.  Path planning of unmanned aerial vehicle based on improved gravitational search algorithm , 2012 .

[53]  Lin Yan,et al.  A hybrid method combining genetic algorithm and Hooke-Jeeves method for 4PLRP , 2014, 2014 IEEE/CIC International Conference on Communications in China - Workshops (CIC/ICCC).

[54]  Erik Cuevas,et al.  Ls-II: An Improved Locust Search Algorithm for Solving Optimization Problems , 2018, Mathematical Problems in Engineering.

[55]  Xin-She Yang,et al.  Firefly Algorithm, Lévy Flights and Global Optimization , 2010, SGAI Conf..

[56]  Jin-Kao Hao,et al.  Recent Advances in Graph Vertex Coloring , 2013, Handbook of Optimization.

[57]  Erik Cuevas,et al.  A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power Allocation in Plug-in Hybrid Electric Vehicles , 2017 .

[58]  Gonzalo Pajares,et al.  Improving multi-criterion optimization with chaos: a novel Multi-Objective Chaotic Crow Search Algorithm , 2017, Neural Computing and Applications.

[59]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[60]  Parham Moradi,et al.  A multi-objective particle swarm optimization algorithm for community detection in complex networks , 2017, Swarm Evol. Comput..

[61]  Mohamad Ivan Fanany,et al.  Simulated Annealing Algorithm for Deep Learning , 2015 .

[62]  Dong Zhou,et al.  Translation techniques in cross-language information retrieval , 2012, CSUR.

[63]  Tarun Kumar Sharma,et al.  Social Engineering Prevention by Detecting Malicious URLs Using Artificial Bee Colony Algorithm , 2013, SocProS.

[64]  J. Monnot,et al.  The Traveling Salesman Problem and its Variations , 2014 .

[65]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[66]  Mohammed Azmi Al-Betar,et al.  Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering , 2017, Expert Syst. Appl..

[67]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[68]  Ying Tan,et al.  Fireworks Algorithm for Optimization , 2010, ICSI.

[69]  Clarisse Dhaenens,et al.  Cooperation between Branch and Bound and Evolutionary Approaches to Solve a Bi-objective Flow Shop Problem , 2004, WEA.

[70]  C. Lakshminarayana,et al.  Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm , 2017 .

[71]  Satyasai Jagannath Nanda,et al.  Parallel social spider clustering algorithm for high dimensional datasets , 2016, Eng. Appl. Artif. Intell..

[72]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[73]  Dipayan Guha,et al.  Load frequency control of interconnected power system using grey wolf optimization , 2016, Swarm Evol. Comput..

[74]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[75]  Erik Cuevas,et al.  Multithreshold Segmentation by Using an Algorithm Based on the Behavior of Locust Swarms , 2015 .

[76]  Jason H. Moore,et al.  Investigating the parameter space of evolutionary algorithms , 2017, BioData Mining.

[77]  Hojjat Adeli,et al.  Simulated Annealing, Its Variants and Engineering Applications , 2016, Int. J. Artif. Intell. Tools.

[78]  Jemal H. Abawajy,et al.  Recent Advances on Soft Computing and Data Mining - Proceedings of the Third International Conference on Soft Computing and Data Mining (SCDM 2018), Johor, Malaysia, February 06-07, 2018 , 2014, SCDM.

[79]  Huynh Thi Thanh Binh,et al.  A survey on hybridizing genetic algorithm with dynamic programming for solving the traveling salesman problem , 2013, 2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR).

[80]  T. Ince,et al.  Perceptual Dominant Color Extraction byMultidimensional Particle , 2009 .

[81]  Erik Valdemar Cuevas Jiménez,et al.  Evolutionary Computation Techniques: A Comparative Perspective , 2016, Studies in Computational Intelligence.

[82]  Alireza Askarzadeh,et al.  A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm , 2016 .

[83]  Nadeem Javaid,et al.  A Social Spider Optimization Based Home Energy Management System , 2017, NBiS.

[84]  Leonardo Vanneschi,et al.  A survey of semantic methods in genetic programming , 2014, Genetic Programming and Evolvable Machines.

[85]  Wei Han,et al.  Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm , 2014, TheScientificWorldJournal.

[86]  Isotta Chimenti,et al.  The Potential of GMP-Compliant Platelet Lysate to Induce a Permissive State for Cardiovascular Transdifferentiation in Human Mediastinal Adipose Tissue-Derived Mesenchymal Stem Cells , 2015, BioMed research international.

[87]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[88]  Diego Alberto Oliva Navarro,et al.  Advances of Evolutionary Computation: Methods and Operators , 2016, Studies in Computational Intelligence.

[89]  Pushpendra Kumar Yadav,et al.  An Overview of Genetic Algorithm and Modeling , 2012 .

[90]  Mohanad Albughdadi,et al.  Density-based particle swarm optimization algorithm for data clustering , 2018, Expert Syst. Appl..

[91]  Nassim Rizoug,et al.  Optimal Energy Management for a Li-Ion Battery/Supercapacitor Hybrid Energy Storage System Based on a Particle Swarm Optimization Incorporating Nelder–Mead Simplex Approach , 2017, IEEE Transactions on Intelligent Vehicles.

[92]  Krishnendu Chakrabarty,et al.  Sensor deployment and target localization based on virtual forces , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[93]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[94]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[95]  Bernhard Sendhoff,et al.  Covariance Matrix Adaptation Revisited - The CMSA Evolution Strategy - , 2008, PPSN.

[96]  Abdelmalik Taleb-Ahmed,et al.  Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study , 2016, Expert Syst. Appl..

[97]  Xin-She Yang,et al.  Nature-Inspired Algorithms: Success and Challenges , 2015 .

[98]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[99]  Trong-The Nguyen,et al.  Robot Path Planning Optimization Based on Multiobjective Grey Wolf Optimizer , 2016, ICGEC.

[100]  Adam P. Piotrowski,et al.  Review of Differential Evolution population size , 2017, Swarm Evol. Comput..

[101]  Asim Imdad Wagan,et al.  Wind turbine micrositing by using the firefly algorithm , 2015, Appl. Soft Comput..

[102]  Gonzalo Pajares,et al.  Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm , 2017, Expert Syst. Appl..

[103]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[104]  Vladan Babovic,et al.  GENETIC PROGRAMMING AND ITS APPLICATION IN REAL‐TIME RUNOFF FORECASTING 1 , 2001 .

[105]  Rafael Martí,et al.  Scatter Search: Diseño Básico y Estrategias avanzadas , 2002, Inteligencia Artif..

[106]  Mohammed Azmi Al-Betar,et al.  Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm , 2017, Int. J. Data Min. Bioinform..

[107]  Yuhui Shi,et al.  Maintaining population diversity in brain storm optimization algorithm , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[108]  Erik Valdemar Cuevas Jiménez,et al.  A swarm optimization algorithm inspired in the behavior of the social-spider , 2013, Expert Syst. Appl..

[109]  Vivekananda Mukherjee,et al.  Application of chaotic krill herd algorithm for optimal power flow with direct current link placement problem , 2017 .

[110]  Majdi M. Mafarja,et al.  Hybrid Whale Optimization Algorithm with simulated annealing for feature selection , 2017, Neurocomputing.

[111]  Marco A. Contreras-Cruz,et al.  Distributed path planning for multi-robot teams based on Artificial Bee Colony , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).

[112]  Jeremy Avigad,et al.  Formalizing O Notation in Isabelle/HOL , 2004, IJCAR.

[113]  Xiaoji Liu,et al.  An Analog of the Adjugate Matrix for the Outer Inverse (2) , 2012 .

[114]  Soufiene Bouallegue,et al.  Dynamics modeling and advanced metaheuristics based LQG controller design for a Quad Tilt Wing UAV , 2018 .

[115]  João Paulo Papa,et al.  Social-Spider Optimization-based Support Vector Machines applied for energy theft detection , 2016, Comput. Electr. Eng..

[116]  Hala Alshamlan,et al.  mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling , 2015, BioMed research international.

[117]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[118]  Thomas Bäck,et al.  Contemporary Evolution Strategies , 2013, Natural Computing Series.

[119]  Xin-She Yang,et al.  Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems , 2012 .

[120]  Parvaneh Saeedi,et al.  A novel data clustering algorithm based on electrostatic field concepts , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[121]  Saurabh Chaudhury,et al.  Moth-Flame Optimization Algorithm Based Multilevel Thresholding for Image Segmentation , 2017, Int. J. Appl. Metaheuristic Comput..

[122]  Zhi-hui Zhan,et al.  Niching community based differential evolution for multimodal optimization problems , 2017, 2017 IEEE Symposium Series on Computational Intelligence (SSCI).

[123]  Leonardo Trujillo,et al.  Interest point detection through multiobjective genetic programming , 2012, Appl. Soft Comput..

[124]  Mohammed Azmi Al-Betar,et al.  A krill herd algorithm for efficient text documents clustering , 2016, 2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE).

[125]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[126]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[127]  Xin-She Yang,et al.  Attraction and diffusion in nature-inspired optimization algorithms , 2015, Neural Computing and Applications.

[128]  J. Belwin Edward,et al.  Parameter Extraction of Solar Photovoltaic Modules Using Gravitational Search Algorithm , 2016, J. Electr. Comput. Eng..

[129]  José Fernando Oliveira,et al.  Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming , 2006, Eur. J. Oper. Res..

[130]  Luc Boullart,et al.  Genetic programming: principles and applications , 2001 .

[131]  Sen Zhang,et al.  Template matching using grey wolf optimizer with lateral inhibition , 2017 .

[132]  Dazhi Pan,et al.  Vehicle Routing Problem Based on Particle Swarm Optimization Algorithm with Gauss Mutation , 2016 .

[133]  Aboul Ella Hassanien,et al.  Training feedforward neural networks using Sine-Cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite , 2016, 2016 12th International Computer Engineering Conference (ICENCO).

[134]  Mohammed Essaid Riffi,et al.  A novel discrete bat algorithm for solving the travelling salesman problem , 2015, Neural Computing and Applications.

[135]  Jianhua Wang,et al.  A Wireless Sensor Network Location Algorithm Based on Firefly Algorithm , 2012, AsiaSim.

[136]  Magdalene Marinaki,et al.  A Glowworm Swarm Optimization algorithm for the Vehicle Routing Problem with Stochastic Demands , 2016, Expert Syst. Appl..

[137]  Aboul Ella Hassanien,et al.  Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation , 2017, Expert Syst. Appl..

[138]  Uday Kumar Chakraborty,et al.  Genetic and evolutionary computing , 2008, Inf. Sci..

[139]  Aboul Ella Hassanien,et al.  Binary grey wolf optimization approaches for feature selection , 2016, Neurocomputing.

[140]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[141]  Geng Zhang,et al.  Algorithm for Wireless Sensor Networks Based on Grid Management , 2014 .

[142]  Padmavathi Kora,et al.  Improved Bat algorithm for the detection of myocardial infarction , 2015, SpringerPlus.

[143]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[144]  Marte A. Ramírez-Ortegón,et al.  An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation , 2013, Applied Intelligence.

[145]  Jinyi Guo,et al.  Elitism and Distance Strategy for Selection of Evolutionary Algorithms , 2018, IEEE Access.

[146]  Chii-Jen Chen Image Segmentation for Lung Lesions Using Ant Colony Optimization Classifier in Chest CT , 2017, IIH-MSP.

[147]  Alkin Yurtkuran,et al.  A new Hybrid Electromagnetism-like Algorithm for capacitated vehicle routing problems , 2010, Expert Syst. Appl..

[148]  Dalila Boughaci,et al.  Harmony search algorithm for image reconstruction from projections , 2016, Appl. Soft Comput..

[149]  Lu Wang,et al.  An Approach to Feature Selection Based on Ant Colony Optimization and Rough Set , 2011, ICIC 2011.

[150]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[151]  Dinesh Singh,et al.  Selection of parameters for advanced machining processes using firefly algorithm , 2017 .

[152]  Long Quan,et al.  A novel data clustering algorithm based on modified gravitational search algorithm , 2017, Eng. Appl. Artif. Intell..

[153]  Saibal K. Pal,et al.  Applying Cuckoo Search for analysis of LFSR based cryptosystem , 2016 .

[154]  Kun-Huang Chen,et al.  An improved electromagnetism-like mechanism algorithm and its application to the prediction of diabetes mellitus , 2015, J. Biomed. Informatics.

[155]  Haluk Topcuoglu,et al.  A meta-heuristic based three-dimensional path planning environment for unmanned aerial vehicles , 2013, Simul..

[156]  Frank Neumann,et al.  Bioinspired computation in combinatorial optimization: algorithms and their computational complexity , 2010, GECCO '12.

[157]  Mark Harman,et al.  Genetic programming for Reverse Engineering , 2013, 2013 20th Working Conference on Reverse Engineering (WCRE).

[158]  Marie-Claude Portmann,et al.  Branch and bound crossed with GA to solve hybrid flowshops , 1998, Eur. J. Oper. Res..

[159]  Erik Valdemar Cuevas Jiménez,et al.  Engineering Applications of Soft Computing , 2017, Intelligent Systems Reference Library.

[160]  Laith Mohammad Abualigah,et al.  APPLYING GENETIC ALGORITHMS TO INFORMATION RETRIEVAL USING VECTOR SPACE MODEL , 2015 .

[161]  Jung-Fa Tsai,et al.  A Review of Deterministic Optimization Methods in Engineering and Management , 2012 .

[162]  El-Ghazali Talbi,et al.  Hybridizing exact methods and metaheuristics: A taxonomy , 2009, Eur. J. Oper. Res..

[163]  Erik Valdemar Cuevas Jiménez,et al.  A template matching approach based on the behavior of swarms of locust , 2017, Applied Intelligence.

[164]  Cristina P. Santos,et al.  Automatic generation of biped locomotion controllers using genetic programming , 2014, Robotics Auton. Syst..

[165]  Cezary Z. Janikow,et al.  A survey of modularity in genetic programming , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[166]  Xin-She Yang,et al.  Firefly Algorithm: Recent Advances and Applications , 2013, ArXiv.

[167]  Anne Auger,et al.  LS-CMA-ES: A Second-Order Algorithm for Covariance Matrix Adaptation , 2004, PPSN.

[168]  Wolfgang Banzhaf,et al.  Genetic Programming and Its Application in Machining Technology , 2003 .

[169]  Laith Mohammad Abualigah,et al.  Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering , 2017, The Journal of Supercomputing.

[170]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[171]  Rommel G. Regis,et al.  Particle swarm with radial basis function surrogates for expensive black-box optimization , 2014, J. Comput. Sci..

[172]  K.Y. Lee,et al.  Differential Evolution and its Applications to Power Plant Control , 2007, 2007 International Conference on Intelligent Systems Applications to Power Systems.

[173]  Peng Hao,et al.  Optimum design of aircraft panels based on adaptive dynamic harmony search , 2017 .

[174]  Ngoc Thanh Nguyen,et al.  A combined negative selection algorithm-particle swarm optimization for an email spam detection system , 2015, Eng. Appl. Artif. Intell..

[175]  Ali Wagdy Mohamed,et al.  An alternative differential evolution algorithm for global optimization , 2012 .

[176]  Dina S. Deif,et al.  An Ant Colony Optimization Approach for the Deployment of Reliable Wireless Sensor Networks , 2017, IEEE Access.

[177]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[178]  Ming-Huwi Horng,et al.  Multilevel Image Thresholding Selection Using the Artificial Bee Colony Algorithm , 2010, AICI.

[179]  Mohsen Khatibinia,et al.  Accelerated multi-gravitational search algorithm for size optimization of truss structures , 2018, Swarm Evol. Comput..

[180]  Günther R. Raidl,et al.  Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification , 2005, IWINAC.

[181]  Essam Said Hanandeh,et al.  A novel hybridization strategy for krill herd algorithm applied to clustering techniques , 2017, Appl. Soft Comput..

[182]  Cong Xie,et al.  Application of Improved Cuckoo Search Algorithm to Path Planning Unmanned Aerial Vehicle , 2016, ICIC.

[183]  Shahrin Md. Ayob,et al.  New technique for global solar radiation forecasting by simulated annealing and genetic algorithms using , 2014 .

[184]  Rashi Sharma,et al.  Comparative study of metaheuristic algorithms using Knapsack Problem , 2017, 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence.

[185]  Christine A. Shoemaker,et al.  ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions , 2008, SIAM J. Sci. Comput..

[186]  Consolación Gil,et al.  Adaptive community detection in complex networks using genetic algorithms , 2017, Neurocomputing.

[187]  Xin-She Yang,et al.  Sizing optimization of truss structures using flower pollination algorithm , 2015, Appl. Soft Comput..

[188]  Yongquan Zhou,et al.  Discrete greedy flower pollination algorithm for spherical traveling salesman problem , 2017, Neural Computing and Applications.

[189]  Frede Blaabjerg,et al.  Particle Swarm Optimization Based Solar PV Array Reconfiguration of the Maximum Power Extraction Under Partial Shading Conditions , 2018, IEEE Transactions on Sustainable Energy.

[190]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[191]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[192]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[193]  Mohammed Azmi Al-Betar,et al.  A Non-convex Economic Dispatch Problem with Valve Loading Effect Using a New Modified $$\beta $$β-Hill Climbing Local Search Algorithm , 2018 .

[194]  Osama Moh’d Alia,et al.  Maximizing Wireless Sensor Network Coverage With Minimum Cost Using Harmony Search Algorithm , 2017, IEEE Sensors Journal.

[195]  Melanie Mitchell,et al.  Genetic algorithms: An overview , 1995, Complex..

[196]  Agnès Plateau,et al.  A hybrid search combining interior point methods and metaheuristics for 0–1 programming , 2002 .

[197]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[198]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[199]  Christian Scheideler,et al.  Algorithms Unplugged , 2011, Algorithms Unplugged.