Reports of my demise are greatly exaggerated: $N$-subjettiness taggers take on jet images

We compare the performance of a convolutional neural network (CNN) trained on jet images with dense neural networks (DNNs) trained on n-subjettiness variables to study the distinguishing power of these two separate techniques applied to top quark decays. We find that they perform almost identically and are highly correlated once jet mass information is included, which suggests they are accessing the same underlying information which can be intuitively understood as being contained in 4-, 5-, 6-, and 8-body kinematic phase spaces depending on the sample. This suggests both of these methods are highly useful for heavy object tagging and provides a tentative answer to the question of what the image network is actually learning.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  D. Soper,et al.  Finding physics signals with shower deconstruction , 2011, 1102.3480.

[3]  Matt Dobbs,et al.  The HepMC C++ Monte Carlo event record for High Energy Physics ? ? Available via the following web-a , 2001 .

[4]  A. Larkoski,et al.  Novel jet observables from machine learning , 2017, 1710.01305.

[5]  Leandro Giordano Almeida,et al.  Playing tag with ANN: boosted top identification with pattern recognition , 2015, 1501.05968.

[6]  John Scott Bridle,et al.  Probabilistic Interpretation of Feedforward Classification Network Outputs, with Relationships to Statistical Pattern Recognition , 1989, NATO Neurocomputing.

[7]  E. Dawe,et al.  Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks , 2016, 1609.00607.

[8]  Patrick T. Komiske,et al.  Energy flow polynomials: a complete linear basis for jet substructure , 2017, 1712.07124.

[9]  M. Seymour Searches for new particles using cone and cluster jet algorithms: a comparative study , 1994 .

[10]  Andy Buckley,et al.  Rivet user manual , 2010, Comput. Phys. Commun..

[11]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[12]  F. Tackmann,et al.  N jettiness: an inclusive event shape to veto jets. , 2010, Physical review letters.

[13]  J. Thaler,et al.  Maximizing boosted top identification by minimizing N-subjettiness , 2011, 1108.2701.

[14]  Tilman Plehn,et al.  Fat jets for a light higgs boson. , 2009, Physical review letters.

[15]  S. Forte,et al.  Parton distributions with LHC data , 2012, 1207.1303.

[16]  S. D. Ellis,et al.  Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012 , 2013, 1311.2708.

[17]  S. Lloyd,et al.  LHAPDF6: parton density access in the LHC precision era , 2014, The European Physical Journal C.

[18]  Tilman Plehn,et al.  Stop reconstruction with tagged tops , 2010, 1006.2833.

[19]  David E Kaplan,et al.  Top-Tagging: A Method for Identifying Boosted Hadronic Tops , 2008 .

[20]  P. Bartalini,et al.  A standard format for Les Houches Event Files , 2007, Comput. Phys. Commun..

[21]  Gregor Kasieczka,et al.  Deep-learned Top Tagging with a Lorentz Layer , 2017, SciPost Physics.

[22]  Luke de Oliveira,et al.  Jet-images — deep learning edition , 2015, Journal of High Energy Physics.

[23]  M. P. Casado,et al.  Evidence for the H→bb¯$$ H\to b\overline{b} $$ decay with the ATLAS detector , 2017 .

[24]  Tilman Plehn,et al.  Resonance searches with an updated top tagger , 2015, 1503.05921.

[25]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[26]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[27]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[28]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[29]  J. Thaler,et al.  Identifying boosted objects with N-subjettiness , 2010, 1011.2268.

[30]  Patrick T. Komiske,et al.  Deep learning in color: towards automated quark/gluon jet discrimination , 2016, Journal of High Energy Physics.

[31]  G. Salam,et al.  Energy correlation functions for jet substructure , 2013, 1305.0007.

[32]  Ellis,et al.  Successive combination jet algorithm for hadron collisions. , 1993, Physical review. D, Particles and fields.

[33]  P. Baldi,et al.  Jet Substructure Classification in High-Energy Physics with Deep Neural Networks , 2016, 1603.09349.

[34]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[35]  J. A. Aguilar-Saavedra,et al.  A generic anti-QCD jet tagger , 2017, 1709.01087.

[36]  J. Cogan,et al.  Jet-images: computer vision inspired techniques for jet tagging , 2014, 1407.5675.

[37]  J. T. Childers,et al.  Jet mass and substructure of inclusive jets in sqrt(s) = 7 TeV pp collisions with the ATLAS experiment , 2012 .

[38]  D. Soper,et al.  Finding top quarks with shower deconstruction , 2012, 1211.3140.

[39]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[40]  Atlas Collaboration Jet mass and substructure of inclusive jets in sqrt(s) = 7 TeV pp collisions with the ATLAS experiment , 2012, 1203.4606.

[41]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[42]  D. Shih,et al.  Pulling out all the tops with computer vision and deep learning , 2018, Journal of High Energy Physics.

[43]  G. Kasieczka,et al.  Deep-learning top taggers or the end of QCD? , 2017, 1701.08784.

[44]  I. Moult,et al.  New angles on energy correlation functions , 2016, Journal of High Energy Physics.

[45]  J. Butterworth,et al.  Ju n 20 08 Jet substructure as a new Higgs search channel at the LHC , 2008 .

[46]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[47]  A. Larkoski,et al.  How much information is in a jet? , 2017, Journal of High Energy Physics.

[48]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).