The Energetics of Membrane Fusion from Binding, through Hemifusion, Pore Formation, and Pore Enlargement

The main steps of viral membrane fusion are local membrane approach, hemifusion, pore formation, and pore enlargement. Experiments and theoretical analyses have helped determine the relative energies required for each step. Key protein structures and conformational changes of the fusion process have been identified. The physical deformations of monolayer bending and lipid tilt have been applied to the steps of membrane fusion. Experiment and theory converge to strongly indicate that, contrary to former conceptions, the fusion process is progressively more energetically difficult: hemifusion has a relatively low energy barrier, pore formation is more energy-consuming, and pore enlargement is the most difficult to achieve.

[1]  J. Sodroski,et al.  Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein , 1993, Journal of virology.

[2]  Y. Henis,et al.  GPI- and transmembrane-anchored influenza hemagglutinin differ in structure and receptor binding activity , 1993, The Journal of cell biology.

[3]  G. Melikyan,et al.  Evidence That the Transition of HIV-1 Gp41 into a Six-Helix Bundle, Not the Bundle Configuration, Induces Membrane Fusion , 2000, The Journal of cell biology.

[4]  D. Gingell,et al.  Lessons for the study of membrane fusion from membrane interactions in phospholipid systems. , 1984, Ciba Foundation symposium.

[5]  J. Lepault,et al.  Visualization of the Target-Membrane-Inserted Fusion Protein of Semliki Forest Virus by Combined Electron Microscopy and Crystallography , 2003, Cell.

[6]  T. Matthews,et al.  Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Center,et al.  Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  G. Melikyan,et al.  HIV-1 envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation. , 2003, Molecular biology of the cell.

[9]  R. Rand,et al.  The effects of acyl chain length and saturation of diacylglycerols and phosphatidylcholines on membrane monolayer curvature. , 2002, Biophysical journal.

[10]  Hiroshi Noguchi,et al.  Fusion pathways of vesicles: A Brownian dynamics simulation , 2001 .

[11]  R. Lamb,et al.  The influenza virus hemagglutinin cytoplasmic tail is not essential for virus assembly or infectivity. , 1994, The EMBO journal.

[12]  M. Müller,et al.  A new mechanism of model membrane fusion determined from Monte Carlo simulation. , 2002, Biophysical journal.

[13]  F S Cohen,et al.  A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype. , 1999, Molecular biology of the cell.

[14]  K. Stiasny,et al.  Structure of a flavivirus envelope glycoprotein in its low‐pH‐induced membrane fusion conformation , 2004, The EMBO journal.

[15]  J. Skehel,et al.  Studies on influenza haemagglutinin fusion peptide mutants generated by reverse genetics , 2001, The EMBO journal.

[16]  B. Lentz,et al.  Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. , 1997, Biochemistry.

[17]  G. Melikyan,et al.  The process of membrane fusion: Nipples, hemifusion, pores, and pore growth , 2002 .

[18]  S. Durell,et al.  Dilation of the Human Immunodeficiency Virus–1 Envelope Glycoprotein Fusion Pore Revealed by the Inhibitory Action of a Synthetic Peptide from gp41 , 1998, The Journal of cell biology.

[19]  D. A. Sanders,et al.  The role of the membrane-spanning domain sequence in glycoprotein-mediated membrane fusion. , 1999, Molecular biology of the cell.

[20]  Huey W. Huang,et al.  New phases of phospholipids and implications to the membrane fusion problem. , 2003, Biochemistry.

[21]  M. Kozlov,et al.  Tilt model of inverted amphiphilic mesophases , 1998 .

[22]  J. Philippot,et al.  Membrane anchorage brings about fusogenic properties in a short synthetic peptide. , 1997, Biochemistry.

[23]  M. Kozlov,et al.  The shape of lipid molecules and monolayer membrane fusion , 1985 .

[24]  S. Tatulian,et al.  Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy. , 1995, The EMBO journal.

[25]  M. Roth,et al.  Amino acid sequence requirements of the transmembrane and cytoplasmic domains of influenza virus hemagglutinin for viable membrane fusion. , 1999, Molecular biology of the cell.

[26]  Yonathan Kozlovsky,et al.  Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. , 2002, Biophysical journal.

[27]  R. Blumenthal,et al.  Role of the fusion peptide sequence in initial stages of influenza hemagglutinin-induced cell fusion. , 1993, The Journal of biological chemistry.

[28]  R. Rand,et al.  The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. , 2001, Biophysical journal.

[29]  F. Richards,et al.  The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. , 1991, The Journal of biological chemistry.

[30]  Y. Shai,et al.  How structure correlates to function for membrane associated HIV-1 gp41 constructs corresponding to the N-terminal half of the ectodomain. , 2003, Journal of molecular biology.

[31]  L. Chernomordik,et al.  Kinetically differentiating influenza hemagglutinin fusion and hemifusion machines. , 2003, Biophysical journal.

[32]  J. Lepault,et al.  Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus , 2004, Nature.

[33]  M. Kozlov,et al.  Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. , 1996, Biophysical journal.

[34]  C. Weiss,et al.  Structure-Function Studies of the Self-Assembly Domain of the Human Immunodeficiency Virus Type 1 Transmembrane Protein gp41 , 2000, Journal of Virology.

[35]  R. Lamb,et al.  Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion , 2001, The EMBO journal.

[36]  T. Wolfsberg,et al.  Virus-cell and cell-cell fusion. , 1996, Annual review of cell and developmental biology.

[37]  J. Zimmerberg,et al.  Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W. Almers,et al.  Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion , 1993, The Journal of cell biology.

[39]  R. Epand,et al.  Thermal denaturation of influenza virus and its relationship to membrane fusion. , 2002, The Biochemical journal.

[40]  V. Markin,et al.  Membrane fusion: stalk model revisited. , 2002, Biophysical journal.

[41]  M. Roth,et al.  A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion. , 2000, Molecular biology of the cell.

[42]  H. Park,et al.  Leash in the groove mechanism of membrane fusion , 2003, Nature Structural Biology.

[43]  E. Hunter,et al.  Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity , 1992, Journal of virology.

[44]  S. Durell,et al.  What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). , 1997, Molecular membrane biology.

[45]  D. Z. Cleverley,et al.  The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R. Blumenthal,et al.  Acid-induced changes in thermal stability and fusion activity of influenza hemagglutinin. , 2002, Biochemistry.

[47]  M. Kozlov,et al.  [Possible mechanism of membrane fusion]. , 1983, Biofizika.

[48]  P. S. Kim,et al.  A spring-loaded mechanism for the conformational change of influenza hemagglutinin , 1993, Cell.

[49]  J. White,et al.  GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes , 1995, The Journal of cell biology.

[50]  Yonathan Kozlovsky,et al.  Stalk model of membrane fusion: solution of energy crisis. , 2002, Biophysical journal.

[51]  J. Zimmerberg,et al.  Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines , 2001, The Journal of cell biology.

[52]  M. Sheetz,et al.  Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Siegel,et al.  Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. , 1993, Biophysical journal.

[54]  G. Melikyan,et al.  Inner but Not Outer Membrane Leaflets Control the Transition from Glycosylphosphatidylinositol-anchored Influenza Hemagglutinin-induced Hemifusion to Full Fusion , 1997, The Journal of cell biology.

[55]  R. Lamb,et al.  The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. , 1997, Virology.

[56]  G. Melikyan,et al.  The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores. , 2000, Molecular biology of the cell.

[57]  P. Bronk,et al.  Multiple Local Contact Sites are Induced by GPI‐Linked Influenza Hemagglutinin During Hemifusion and Flickering Pore Formation , 2000, Traffic.

[58]  R. Macdonald,et al.  Bilayer Mixing, Fusion, and Lysis Following the Interaction of Populations of Cationic and Anionic Phospholipid Bilayer Vesicles , 2003, The Journal of Membrane Biology.

[59]  J. Skehel,et al.  Coiled Coils in Both Intracellular Vesicle and Viral Membrane Fusion , 1998, Cell.

[60]  R. T. Armstrong,et al.  The Transmembrane Domain of Influenza Hemagglutinin Exhibits a Stringent Length Requirement to Support the Hemifusion to Fusion Transition , 2000, The Journal of cell biology.

[61]  F S Cohen,et al.  Membrane mechanics can account for fusion pore dilation in stages. , 1995, Biophysical journal.

[62]  L. Chernomordik,et al.  The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. , 1987, Biochimica et biophysica acta.

[63]  Kozlov Mm,et al.  On the Theory of Membrane Fusion. The Stalk Mechanism , 1984 .

[64]  M. Kozlov,et al.  Elastic energy of tilt and bending of fluid membranes , 2000 .

[65]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[66]  R. Blumenthal,et al.  Role of the Membrane-Proximal Domain in the Initial Stages of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein-Mediated Membrane Fusion , 1999, Journal of Virology.

[67]  Y. Shai,et al.  Interaction of fluorescently labeled analogues of the amino-terminal fusion peptide of Sendai virus with phospholipid membranes. , 1994, The Journal of biological chemistry.

[68]  D. Siegel The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. , 1999, Biophysical journal.

[69]  R. Epand,et al.  The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion. , 1999, Journal of molecular biology.

[70]  Ian A. Wilson,et al.  The structure of the influenza virus haemagglutinin glycoprotein at 3 Ã resolution , 1981 .

[71]  F S Cohen,et al.  A quantitative model for membrane fusion based on low-energy intermediates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Lin Yang,et al.  Observation of a Membrane Fusion Intermediate Structure , 2002, Science.

[73]  L. Tamm,et al.  Thermodynamics of fusion peptide-membrane interactions. , 2003, Biochemistry.

[74]  Min Lu,et al.  Structural and Functional Analysis of Interhelical Interactions in the Human Immunodeficiency Virus Type 1 gp41 Envelope Glycoprotein by Alanine-Scanning Mutagenesis , 2001, Journal of Virology.

[75]  M. Lawrence,et al.  The structural biology of type I viral membrane fusion , 2003, Nature Reviews Molecular Cell Biology.

[76]  W. Weissenhorn,et al.  A soluble domain of the membrane-anchoring chain of influenza virus hemagglutinin (HA2) folds in Escherichia coli into the low-pH-induced conformation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[77]  A. Mittal,et al.  Comprehensive kinetic analysis of influenza hemagglutinin-mediated membrane fusion: role of sialate binding. , 2001, Biophysical journal.

[78]  J. Skehel,et al.  N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Rothman,et al.  Fusion of Cells by Flipped SNAREs , 2003, Science.

[80]  D. Bolognesi,et al.  A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion , 1995, Journal of virology.

[81]  G. Melikyan,et al.  Completion of trimeric hairpin formation of influenza virus hemagglutinin promotes fusion pore opening and enlargement. , 2003, Virology.

[82]  J. Zimmerberg,et al.  Dynamics of fusion pores connecting membranes of different tensions. , 2000, Biophysical journal.

[83]  W. Almers,et al.  Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. , 1995, Current opinion in cell biology.

[84]  F S Cohen,et al.  Methodologies in the study of cell-cell fusion. , 1998, Methods.

[85]  J. Franks,et al.  A Point Mutation in the Binding Subunit of a Retroviral Envelope Protein Arrests Virus Entry at Hemifusion , 2004, Journal of Virology.

[86]  I. Wilson,et al.  Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin , 1987, The Journal of cell biology.

[87]  P. Bronk,et al.  The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation , 1998, The Journal of cell biology.

[88]  Min Lu,et al.  Subdomain Folding and Biological Activity of the Core Structure from Human Immunodeficiency Virus Type 1 gp41: Implications for Viral Membrane Fusion , 1999, Journal of Virology.

[89]  R. Blumenthal,et al.  Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]iodonaphthyl azide photolabeling studies in biological membranes. , 1997, Biochemistry.

[90]  J. Moore,et al.  Human Immunodeficiency Virus Type 1 Env with an Intersubunit Disulfide Bond Engages Coreceptors but Requires Bond Reduction after Engagement To Induce Fusion , 2003, Journal of Virology.

[91]  J. Zimmerberg,et al.  Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion , 1994, The Journal of cell biology.

[92]  M. Kozlov,et al.  Lipids in biological membrane fusion , 1995, The Journal of Membrane Biology.

[93]  A. Herrmann,et al.  Meta-stability of the hemifusion intermediate induced by glycosylphosphatidylinositol-anchored influenza hemagglutinin. , 1997, Biophysical journal.

[94]  M. Kozlov,et al.  On the theory of membrane fusion. The stalk mechanism. , 1984, General physiology and biophysics.

[95]  M. Kozlov,et al.  Membrane fusion: overcoming of the hydration barrier and local restructuring. , 1987, Journal of theoretical biology.

[96]  D. Leckband,et al.  Intermolecular forces in biology , 2001, Quarterly Reviews of Biophysics.

[97]  E. Neher Asymmetric membranes resulting from the fusion of two black lipid bilayers. , 1974, Biochimica et biophysica acta.

[98]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[99]  T. Wilk,et al.  Glycoprotein incorporation and HIV-1 infectivity despite exchange of the gp160 membrane-spanning domain. , 1996, Virology.

[100]  R. Doms,et al.  Protein-mediated membrane fusion. , 1989, Annual review of biophysics and biophysical chemistry.

[101]  E. Hunter,et al.  Progressive Truncations C Terminal to the Membrane-Spanning Domain of Simian Immunodeficiency Virus Env Reduce Fusogenicity and Increase Concentration Dependence of Env for Fusion , 2003, Journal of Virology.

[102]  G. Melikyan,et al.  Hemifusion between cells expressing hemagglutinin of influenza virus and planar membranes can precede the formation of fusion pores that subsequently fully enlarge. , 1999, Biophysical journal.

[103]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[104]  S. Ohki,et al.  A theory of membrane fusion , 1984 .

[105]  Y. Modis,et al.  Structure of the dengue virus envelope protein after membrane fusion , 2004, Nature.

[106]  Lukas K. Tamm,et al.  Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin , 2001, Nature Structural Biology.

[107]  Stephen C. Blacklow,et al.  A trimeric structural domain of the HIV-1 transmembrane glycoprotein , 1995, Nature Structural Biology.

[108]  J. Cunningham,et al.  Modular organization of the Friend murine leukemia virus envelope protein underlies the mechanism of infection , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[109]  I. Jelesarov,et al.  Thermodynamics of trimer-of-hairpins formation by the SIV gp41 envelope protein. , 2001, Journal of molecular biology.

[110]  A. Mittal,et al.  Architecture of the influenza hemagglutinin membrane fusion site. , 2003, Biochimica et biophysica acta.

[111]  David J Stevens,et al.  Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation , 1998, Cell.

[112]  Min Lu,et al.  The mechanism of inhibition of HIV-1 env-mediated cell-cell fusion by recombinant cores of gp41 ectodomain. , 2002, Virology.

[113]  G. Semenza,et al.  Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the "fusion peptide". , 1989, The Journal of biological chemistry.

[114]  Judith M. White,et al.  Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion , 1994, Cell.

[115]  H. Ghosh,et al.  Influence of membrane anchoring and cytoplasmic domains on the fusogenic activity of vesicular stomatitis virus glycoprotein G , 1997, Journal of virology.

[116]  Kozlov Mm,et al.  Possible mechanism of membrane fusion , 1983 .

[117]  M. Kozlov,et al.  Protein-lipid interplay in fusion and fission of biological membranes. , 2003, Annual review of biochemistry.

[118]  S. May Structure and energy of fusion stalks: the role of membrane edges. , 2002, Biophysical journal.

[119]  J. Israelachvili,et al.  The hydrophobic interaction is long range, decaying exponentially with distance , 1982, Nature.

[120]  J. Israelachvili,et al.  Role of hydrophobic forces in bilayer adhesion and fusion. , 1992, Biochemistry.