Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer

We consider the solution of an interface problem posed in a bounded domain coated with a layer of thickness $\epsilon$ and with external boundary conditions of Dirichlet or Neumann type. Our aim is to build a multi-scale expansion as $\epsilon$ goes to $0$ for that solution. After presenting a complete multi-scale expansion in a smooth coated domain, we focus on the case of a corner domain. Singularities appear, obstructing the construction of the expansion terms in the same way as in the smooth case. In order to take these singularities into account, we construct profiles in an infinite coated sectorial domain. Combining expansions in the smooth case with splittings in regular and singular parts involving the profiles, we construct two families of multi-scale expansions for the solution in the coated domain with corner. We prove optimal estimates for the remainders of the multi-scale expansions.

[1]  Grégory Vial,et al.  Analyse multi-échelle et conditions aux limites approchées pour un problème avec couche mince dans un domaine à coin , 2003 .

[2]  R. Jackson Inequalities , 2007, Algebra for Parents.

[3]  V. Maz'ya,et al.  Elliptic Boundary Value Problems , 1984 .

[4]  F. G. Leppington MATCHING OF ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS , 1994 .

[5]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[6]  Martin Costabel,et al.  A singularly perturbed mixed boundary value problem , 1996 .

[7]  Serge Nicaise,et al.  Asymptotic expansion of the solution of a mixed Dirichlet–Ventcel problem with a small parameter , 2001 .

[8]  Stefano Lenci,et al.  Mathematical Analysis of a Bonded Joint with a Soft Thin Adhesive , 1999 .

[9]  S. Yau Mathematics and its applications , 2002 .

[10]  P. Grisvard Boundary value problems in non-smooth domains , 1980 .

[11]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[12]  Patrick Joly,et al.  Matching of Asymptotic Expansions for Wave Propagation in Media with Thin Slots I: The Asymptotic Expansion , 2006, Multiscale Model. Simul..

[13]  Keddour Lemrabet,et al.  The Effect of a Thin Coating on the Scattering of a Time-Harmonic Wave for the Helmholtz Equation , 1996, SIAM J. Appl. Math..

[14]  Jacques-Louis Lions,et al.  Nonlinear partial differential equations and their applications , 1998 .

[15]  A. Il'in,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[16]  E. N. Dancer ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .

[17]  P. C. Kearney,et al.  Prepared for publication by , 1985 .

[18]  Habib Ammari,et al.  Thin ferromagnetic films , 2000 .

[19]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[20]  Sébastien Tordeux,et al.  Méthodes Asymptotiques pour la Propagation des Ondes dans les Milieux comportant des Fentes , 2004 .

[21]  Houssem Haddar,et al.  Stability of thin layer approximation of electromagnetic waves scattering by linear and non linear coatings , 2002 .

[22]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[23]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[24]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[25]  William L. Kath,et al.  Mathematical and Numerical Aspects of Wave Propagation , 1998 .

[26]  A. M. Ilʹin,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[27]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[28]  Houssem Haddar,et al.  Effective boundary conditions for thin ferromagnetic coatings. Asymptotic analysis of the 1D model , 2001 .