Sequence characterization of Riordan arrays

In the realm of the Riordan group, we consider the characterization of Riordan arrays by means of the A- and Z-sequences. It corresponds to a horizontal construction of a Riordan array, whereas the traditional approach is through column generating functions. We show how the A- and Z-sequences of the product of two Riordan arrays are derived from those of the two factors; similar results are obtained for the inverse. We also show how the sequence characterization is applied to construct easily a Riordan array. Finally, we give the characterizations relative to some subgroups of the Riordan group, in particular, of the hitting-time subgroup.

[1]  Renzo Sprugnoli,et al.  On Some Alternative Characterizations of Riordan Arrays , 1997, Canadian Journal of Mathematics.

[2]  Renzo Sprugnoli,et al.  Riordan arrays and combinatorial sums , 1994, Discret. Math..

[3]  Renzo Sprugnoli,et al.  Left-inversion of combinatorial sums , 1998, Discret. Math..

[4]  Tianming Wang,et al.  Some identities related to reciprocal functions , 2003, Discret. Math..

[5]  Renzo Sprugnoli,et al.  The Motzkin family , 1992 .

[6]  Esubalew Getie,et al.  A Survey of the Riordan Group , 2011 .

[7]  Louis W. Shapiro,et al.  How to Guess a Generating Function , 1992, SIAM J. Discret. Math..

[8]  Wen-Jin Woan,et al.  A Divisibility Property for a Subgroup of Riordan Matrices , 2000, Discret. Appl. Math..

[9]  Louis W. Shapiro,et al.  Bijections and the Riordan group , 2003, Theor. Comput. Sci..

[10]  Lou Shapiro Some Open Questions about Random Walks, Involutions, Limiting Distributions, and Generating Functions , 2001, Adv. Appl. Math..

[11]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[12]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..

[13]  Leetsch C. Hsu,et al.  The Sheffer group and the Riordan group , 2007, Discret. Appl. Math..

[14]  Hana Kim,et al.  Riordan group involutions , 2008 .

[15]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[16]  Renzo Sprugnoli,et al.  Riordan arrays and the Abel-Gould identity , 1995, Discret. Math..