Power of the Poincaré group: elucidating the hidden symmetries in focal conic domains.
暂无分享,去创建一个
[1] R. Kamien,et al. Symmetry breaking in smectics and surface models of their singularities , 2009, Proceedings of the National Academy of Sciences.
[2] O. Lavrentovich,et al. Liquids with conics , 2009 .
[3] C. Brenner. Memoir , 2009 .
[4] Douglas N. Arnold,et al. Möbius transformations revealed , 2008 .
[5] Xiangjun Xing. Topology of smectic order on compact substrates. , 2007, Physical review letters.
[6] C. Santangelo,et al. Geometric theory of columnar phases on curved substrates. , 2007, Physical review letters.
[7] Blanc,et al. Tiling the plane with noncongruent toric focal conic domains , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[8] O. Lavrentovich,et al. Grain boundaries and the law of corresponding cones in smectics , 2000 .
[9] J. Sethna,et al. Spheric domains in smectic liquid crystals , 1982 .
[10] F. G. Friedlander,et al. The Wave Equation on a Curved Space-Time (Book Review) , 1976 .
[11] George F. R. Ellis,et al. The Large Scale Structure of Space-Time , 2023 .
[12] P. Gennes,et al. Statistical properties of focal conic textures in smectic liquid crystals , 1973 .
[13] Y. Bouligand,et al. Recherches sur les textures des états mésomorphes - 1. Les arrangements focaux dans les smectiques : rappels et considérations théoriques , 1972 .
[14] P. D. Gennes,et al. An analogy between superconductors and smectics A , 1972 .
[15] F. G. Friedlander. Simple progressive solutions of the wave equation , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] Jyoichi Kaneko. WAVE EQUATION AND DUPIN HYPERSURFACE , 1986 .
[17] F. Grandjean,et al. Observations géométriques sur les liquides à coniques focales , 1910 .
[18] A. Einstein. Zur Elektrodynamik bewegter Körper , 1905 .
[19] J. Larmor. A dynamical theory of the electric and luminiferous medium. Part III. Relations with material media , 1897, Proceedings of the Royal Society of London.
[20] A. Cayley. IV. Note on a quartic surface , 1865 .