Integrable mappings derived from soliton equations

[1]  G. R. W. Quispel,et al.  The lattice Gel'fand-Dikii hierarchy , 1992 .

[2]  P. Santini,et al.  Integrable symplectic maps , 1991 .

[3]  H. Capel,et al.  The direct linearisation approach to hierarchies of integrable PDEs in 2 + 1 dimensions: I. Lattice equations and the differential-difference hierarchies , 1990 .

[4]  H. Capel,et al.  Integrable mappings and nonlinear integrable lattice equations , 1990 .

[5]  Y. Suris Discrete time generalized Toda lattices: Complete integrability and relation with relativistic Toda lattices , 1990 .

[6]  G. Quispel,et al.  Conservative and dissipative behaviour in reversible dynamical systems , 1989 .

[7]  G. Quispel,et al.  Reversible mappings of the plane , 1988 .

[8]  F. Nijhoff Linear integral transformations and hierarchies of integrable nonlinear evolution equations , 1988 .

[9]  H. Capel,et al.  Lattice equations, hierarchies and Hamiltonian structures , 1988 .

[10]  C. Thompson,et al.  Integrable mappings and soliton equations , 1988 .

[11]  A. Veselov Integration of the stationary problem for a classical spin chain , 1987 .

[12]  Jarmo Hietarinta,et al.  Direct methods for the search of the second invariant , 1987 .

[13]  G. R. W. Quispel,et al.  Linear integral equations and nonlinear difference-difference equations , 1984 .

[14]  G. R. W. Quispel,et al.  Linearizing integral transform and partial difference equations , 1984 .

[15]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[16]  Michio Jimbo,et al.  Method for Generating Discrete Soliton Equations. I , 1983 .

[17]  S. Orfanidis Group-theoretical aspects of the discrete sine-Gordon equation , 1980 .

[18]  R. Devaney Reversible diffeomorphisms and flows , 1976 .

[19]  George D. Birkhoff,et al.  Surface transformations and their dynamical applications , 1922 .

[20]  C. Thompson,et al.  Integrable mappings and soliton equations II , 1989 .

[21]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[22]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .