Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank

[1]  Valeriia Haberland,et al.  The MR-Base platform supports systematic causal inference across the human phenome , 2018, eLife.

[2]  M. Plomann,et al.  TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators , 2018, Autophagy.

[3]  Ju-Hong Lee,et al.  A Multicenter, Double-Blind, Phase III Clinical Trial to Evaluate the Efficacy and Safety of a Cell and Gene Therapy in Knee Osteoarthritis Patients. , 2018, Human gene therapy. Clinical development.

[4]  Kari Stefansson,et al.  Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis , 2018, Nature Genetics.

[5]  R. Nishimura,et al.  Transcriptional network systems in cartilage development and disease , 2018, Histochemistry and Cell Biology.

[6]  E. Zeggini,et al.  Genome-wide analysis of health-related biomarkers in the UK Household Longitudinal Study reveals novel associations , 2017, Scientific Reports.

[7]  E. Zeggini,et al.  Genome-wide analysis of health-related biomarkers in the UK Household Longitudinal Study reveals novel associations , 2017, Scientific Reports.

[8]  Matthew R. Nelson,et al.  STOPGAP: a database for systematic target opportunity assessment by genetic association predictions , 2017, Bioinform..

[9]  P. Donnelly,et al.  Genome-wide genetic data on ~500,000 UK Biobank participants , 2017, bioRxiv.

[10]  Hae Kyung Im,et al.  Integrating tissue specific mechanisms into GWAS summary results , 2017 .

[11]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[12]  Yazeng Huang,et al.  Erratum to: Transforming Growth Factor b1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression , 2017, Molecules and cells.

[13]  Chang Ho Shin,et al.  Orthopedic Manifestations of Type I Camurati-Engelmann Disease , 2017, Clinics in orthopedic surgery.

[14]  E. Zeggini,et al.  Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis , 2016, Scientific Reports.

[15]  Gautier Koscielny,et al.  Open Targets: a platform for therapeutic target identification and validation , 2016, Nucleic Acids Res..

[16]  Andrew P Morris,et al.  Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes , 2016, European Journal of Human Genetics.

[17]  Judy H. Cho,et al.  A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn's Disease and Human Gut Microbiome Composition. , 2016, Gastroenterology.

[18]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[19]  M. Caulfield,et al.  A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity , 2016, Human molecular genetics.

[20]  Shane A. McCarthy,et al.  Reference-based phasing using the Haplotype Reference Consortium panel , 2016, Nature Genetics.

[21]  Tom R. Gaunt,et al.  LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.

[22]  Yi-Ping Li,et al.  TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease , 2016, Bone Research.

[23]  Hae Kyung Im,et al.  MetaXcan: Summary Statistics Based Gene-Level Association Method Infers Accurate PrediXcan Results , 2016 .

[24]  Sayan Mukherjee,et al.  Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. , 2016, American journal of human genetics.

[25]  Po-Ru Loh,et al.  A Robust Example of Collider Bias in a Genetic Association Study. , 2016, American journal of human genetics.

[26]  Daniel Marbach,et al.  Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics , 2016, PLoS Comput. Biol..

[27]  Latarsha J. Carithers,et al.  The Genotype-Tissue Expression (GTEx) Project. , 2015, Biopreservation and biobanking.

[28]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[29]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[30]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[31]  V. Kraus,et al.  Insights into osteoarthritis progression revealed by analyses of both knee tibiofemoral compartments. , 2015, Osteoarthritis and cartilage.

[32]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[33]  S. Thompson,et al.  Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects , 2015, American journal of epidemiology.

[34]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[35]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[36]  V. Weaver,et al.  Extracellular matrix assembly: a multiscale deconstruction , 2014, Nature Reviews Molecular Cell Biology.

[37]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[38]  Patrick S. Stumpf,et al.  MicroRNA-146a Regulates Human Foetal Femur Derived Skeletal Stem Cell Differentiation by Down-Regulating SMAD2 and SMAD3 , 2014, PloS one.

[39]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[40]  Jin-Hong Kim,et al.  Regulation of the Catabolic Cascade in Osteoarthritis by the Zinc-ZIP8-MTF1 Axis , 2014, Cell.

[41]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[42]  René Rizzoli,et al.  Health economics in the field of osteoarthritis: an expert's consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). , 2013, Seminars in arthritis and rheumatism.

[43]  J. Pelletier,et al.  NFAT3 and TGF-β/SMAD3 regulate the expression of miR-140 in osteoarthritis , 2013, Arthritis Research & Therapy.

[44]  A. Hofman,et al.  A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip , 2013, Annals of the rheumatic diseases.

[45]  German Tischler,et al.  biobambam: tools for read pair collation based algorithms on BAM files , 2013, Source Code for Biology and Medicine.

[46]  Myeung-Su Lee,et al.  MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis , 2013, Journal of Biomedical Science.

[47]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[48]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[49]  Bernadette A. Thomas,et al.  Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 , 2012, The Lancet.

[50]  Andres Metspalu,et al.  Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study , 2012, The Lancet.

[51]  P. Baker,et al.  The effect of surgical factors on early patient-reported outcome measures (PROMS) following total knee replacement. , 2012, The Journal of bone and joint surgery. British volume.

[52]  Stacey S. Cherny,et al.  Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets , 2011, Human Genetics.

[53]  Shuanhu Zhou TGF‐β regulates β‐catenin signaling and osteoblast differentiation in human mesenchymal stem cells , 2011, Journal of cellular biochemistry.

[54]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[55]  Tom R. Gaunt,et al.  Meta-analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height. , 2011, American journal of human genetics.

[56]  E. Tchetina Developmental Mechanisms in Articular Cartilage Degradation in Osteoarthritis , 2010, Arthritis.

[57]  Simon C. Potter,et al.  Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study , 2010, Annals of the rheumatic diseases.

[58]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[59]  Richard O. Hynes,et al.  The Extracellular Matrix: Not Just Pretty Fibrils , 2009, Science.

[60]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[61]  Yi Tang,et al.  TGF-β1-induced Migration of Bone Mesenchymal Stem Cells Couples Bone Resorption and Formation , 2009, Nature Medicine.

[62]  Jon Wakefield,et al.  Bayes factors for genome‐wide association studies: comparison with P‐values , 2009, Genetic epidemiology.

[63]  J. Keski‐Oja,et al.  Latent TGF-beta binding proteins (LTBPs)-1 and -3 coordinate proliferation and osteogenic differentiation of human mesenchymal stem cells. , 2008, Bone.

[64]  A. Fertala,et al.  Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. , 2007, Current pharmaceutical design.

[65]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[66]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[67]  Reem A. Kanaan,et al.  Transforming growth factor beta1, bone connection. , 2006, Medical science monitor : international medical journal of experimental and clinical research.

[68]  Ruili Li,et al.  Interleukin‐11 Receptor Signaling Is Required for Normal Bone Remodeling , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[69]  S. Wientroub,et al.  Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment , 2005, Journal of Medical Genetics.

[70]  J. Glowacki,et al.  Cooperation Between TGF‐β and Wnt Pathways During Chondrocyte and Adipocyte Differentiation of Human Marrow Stromal Cells , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[71]  Yannick Jacques,et al.  Characterization of a potent human interleukin-11 agonist. , 2003, The Biochemical journal.

[72]  S. Takeda,et al.  Interleukin-11 as a Stimulatory Factor for Bone Formation Prevents Bone Loss with Advancing Age in Mice* , 2002, The Journal of Biological Chemistry.

[73]  C. Deng,et al.  TGF-β/Smad3 Signals Repress Chondrocyte Hypertrophic Differentiation and Are Required for Maintaining Articular Cartilage , 2001, The Journal of cell biology.

[74]  N. Hooper,et al.  The renal membrane dipeptidase (dehydropeptidase I) inhibitor, cilastatin, inhibits the bacterial metallo-beta-lactamase enzyme CphA , 1995, Antimicrobial agents and chemotherapy.

[75]  C. Marcelli,et al.  Genetic Determinism of Primary Early-Onset Osteoarthritis. , 2016, Trends in molecular medicine.

[76]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[77]  B. Berger,et al.  Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.

[78]  Tanya M. Teslovich,et al.  Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index , 2010 .

[79]  Reem A. Kanaan,et al.  Transforming growth factor β1, bone connection , 2006 .