Error estimates of a trigonometric integrator sine pseudo-spectral method for the extended Fisher–Kolmogorov equation

Abstract In this article, a trigonometric integrator sine pseudo-spectral (TISP) method is presented for the extended Fisher–Kolmogorov equation. This method depends on a Gautschi-type integrator in phase space to the temporal approximation and the sine pseudo-spectral method to the spatial discretization. Rigorous error estimates are carried out in the energy space by utilizing the mathematical induction. The error bound shows the new scheme which established by the TISP method has second-order accurate in time and spectral-order accurate in space. Moreover, the new scheme is generalized to higher dimensions. The compact finite difference (CFD) scheme in one and two dimensions which supported by the method of order reduction are constructed as a benchmark for comparisons. Comparison results between two schemes are given to confirm the theoretical studies and demonstrate the efficiency and accuracy of TISP method in both one and multi-dimensional problems.

[1]  Zhiguo Xu,et al.  Error estimates in the energy space for a Gautschi-type integrator spectral discretization for the coupled nonlinear Klein-Gordon equations , 2016, J. Comput. Appl. Math..

[2]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[3]  Xiaofei Zhao AN EXPONENTIAL WAVE INTEGRATOR PSEUDOSPECTRAL METHOD FOR THE SYMMETRIC REGULARIZED-LONG-WAVE EQUATION * , 2016 .

[4]  Weizhu Bao,et al.  Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime , 2011, Numerische Mathematik.

[5]  Xingde Ye,et al.  The Fourier collocation method for the Cahn-Hilliard equation☆ , 2002 .

[6]  Guozhen Zhu,et al.  Experiments on Director Waves in Nematic Liquid Crystals , 1982 .

[7]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[8]  Khaled Omrani,et al.  Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimensions , 2011, Comput. Math. Appl..

[9]  G. Adomian Fisher-Kolmogorov equation , 1995 .

[10]  A. K. Pani,et al.  Numerical methods for the extended Fisher-Kolmogorov (EFK) equation , 2006 .

[11]  Weizhu Bao,et al.  An Exponential Wave Integrator Sine Pseudospectral Method for the Klein-Gordon-Zakharov System , 2013, SIAM J. Sci. Comput..

[12]  Khaled Omrani,et al.  A second-order accurate difference scheme for an extended Fisher-Kolmogorov equation , 2011, Comput. Math. Appl..

[13]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[14]  Xuanchun Dong,et al.  Stability and convergence of trigonometric integrator pseudospectral discretization for N-coupled nonlinear Klein-Gordon equations , 2014, Appl. Math. Comput..

[15]  Yibao Li,et al.  A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation , 2016, Comput. Phys. Commun..

[16]  Bo Liu,et al.  Fourier pseudo-spectral method for the extended Fisher-Kolmogorov equation in two dimensions , 2017 .

[17]  Jie Shen,et al.  Efficient energy stable schemes with spectral discretization in space for anisotropic , 2013 .

[18]  A. K. Pani,et al.  Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation , 2005 .

[19]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[20]  Dee Gt,et al.  Bistable systems with propagating fronts leading to pattern formation. , 1988 .

[21]  Dong Li,et al.  On Second Order Semi-implicit Fourier Spectral Methods for 2D Cahn–Hilliard Equations , 2017, J. Sci. Comput..

[22]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[23]  Thirupathi Gudi,et al.  A fully discrete C0 interior penalty Galerkin approximation of the extended Fisher-Kolmogorov equation , 2013, J. Comput. Appl. Math..

[24]  Dongdong He,et al.  On the L∞-norm convergence of a three-level linearly implicit finite difference method for the extended Fisher-Kolmogorov equation in both 1D and 2D , 2016, Comput. Math. Appl..

[25]  Xiaofei Zhao On error estimates of an exponential wave integrator sine pseudospectral method for the Klein–Gordon–Zakharov system , 2016 .

[26]  Xuanchun Dong,et al.  A trigonometric integrator pseudospectral discretization for the N-coupled nonlinear Klein–Gordon equations , 2012, Numerical Algorithms.

[27]  Yunxian Liu,et al.  A class of stable spectral methods for the Cahn-Hilliard equation , 2009, J. Comput. Phys..

[28]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[29]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[30]  Zhi-zhong Sun,et al.  A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation , 1995 .

[31]  G. Ahlers,et al.  Vortex-Front Propagation in Rotating Couette-Taylor Flow , 1983 .

[32]  Feng Liao,et al.  Conservative compact finite difference scheme for the coupled Schrödinger–Boussinesq equation , 2016 .

[33]  P. Coullet,et al.  Nature of spatial chaos. , 1987, Physical review letters.

[34]  Zhonghua Qiao,et al.  Characterizing the Stabilization Size for Semi-Implicit Fourier-Spectral Method to Phase Field Equations , 2014, SIAM J. Numer. Anal..