Soil‐like deposits observed by Sojourner, the Pathfinder rover

Most of the soil-like materials at the Pathfinder landing site behave like moderately dense soils on Earth with friction angles near 34°–39° and are called cloddy deposits. Cloddy deposits appear to be poorly sorted with dust-sized to granule-sized mineral or rock grains; they may contain pebbles, small rock fragments, and clods. Thin deposits of porous, compressible drifts with friction angles near 26°–28° are also present. Drifts are fine grained. Cohesions of both types of deposits are small. There may be indurated soil-like deposits and/or coated or crusted rocks. Cloddy deposits may be fluvial sediments of the Ares-Tiu floods, but other origins, such as ejecta from nearby impact craters, should be considered. Drifts are probably dusts that settled from the Martian atmosphere. Remote-sensing signatures of the deposits inferred from rover observations are consistent with those observed from orbit and Earth.

[1]  B. Jakosky On the thermal properties of Martian fines , 1986 .

[2]  Edward McKyes,et al.  The cutting of soil by narrow blades , 1977 .

[3]  R. Haberle,et al.  Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo , 1995 .

[4]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[5]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .

[6]  H Y McSween,et al.  The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. , 1997, Science.

[7]  J. Keller,et al.  Surface-Material Maps of Viking Landing Sites on Mars , 1991 .

[8]  James W. Head,et al.  Radial thickness variation in impact crater ejecta - Implications for lunar basin deposits , 1973 .

[9]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[10]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[11]  Mars Pathfinder landing site assessment with Goldstone delay‐Doppler and CW radar experiments , 1997 .

[12]  Carol R. Stoker,et al.  Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results , 1999 .

[13]  Kenneth L. Jones,et al.  The geology of the Viking Lander 1 site , 1977 .

[14]  D. H. Scott,et al.  Multiringed basins - Illustrated by Orientale and associated features. [geologic mapping and photographs of lunar ejecta] , 1974 .

[15]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60 deg S to 60 deg N , 1981 .

[16]  H. J. Moore,et al.  Selection of the Mars Pathfinder landing site , 1997 .

[17]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[18]  Rover Team Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner. Rover Team. , 1997, Science.

[19]  Raymond E. Arvidson,et al.  The Martian surface as imaged, sampled, and analyzed by the Viking landers , 1989 .

[20]  Bob Kanefsky,et al.  Super-Resolution Results from Pathfinder IMP , 1998 .

[21]  J. Harmon A radar study of the Chryse region, Mars , 1997 .

[22]  Gary D. Clow,et al.  A summary of Viking sample-trench analyses for angles of internal friction and cohesions , 1982 .

[23]  J. Ulrichs,et al.  Electrical properties of rocks and their significance for lunar radar observations , 1969 .

[24]  Cary R. Spitzer,et al.  Physical properties of the surface materials at the Viking landing sites on Mars , 1987 .

[25]  R. Haberle,et al.  Atmospheric effects on the remote determination of thermal inertia on mars , 1991 .

[26]  R. Kirk,et al.  The Imager for Mars Pathfinder experiment , 1997 .

[27]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[28]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[29]  R. J. Reid,et al.  Results from the Mars Pathfinder camera. , 1997, Science.

[30]  J. Matijevic,et al.  Autonomous Navigation and the Sojourner Microrover , 1998, Science.

[31]  B. K. Hough,et al.  Basic soils engineering , 1966 .

[32]  G. Olhoeft,et al.  Dielectric properties of the first 100 meters of the Moon , 1975 .

[33]  T. J. Parker "Super Resolution" of the Mars Pathfinder Landing Site, Using Manual Techniques , 1998 .

[34]  N. C. Costes,et al.  Mobility performance of the lunar roving vehicle: Terrestrial studies: Apollo 15 results , 1972 .

[35]  Jeffrey R. Johnson,et al.  Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site , 1999 .

[36]  P. Christensen,et al.  Martian dust mantling and surface composition: Interpretation of thermophysical properties , 1982 .

[37]  Dale C. Ferguson,et al.  Evidence for Martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover , 1999 .

[38]  G. Neugebauer,et al.  Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft , 1973 .

[39]  T. Hagfors,et al.  On the interpretation of radar reflections from the Moon , 1964 .

[40]  Philip R. Christensen,et al.  The spatial distribution of rocks on mars , 1986 .

[41]  H. J. Moore,et al.  Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials , 1989 .

[42]  L. Matthies,et al.  The Pathfinder Microrover , 1996 .

[43]  E. C. Morris,et al.  The geology of the Viking lander 2 site , 1977 .