Role of Extracellular Adenosine Triphosphate in Human Skin

SommaireAntècédentsL’adénosine triphosphate (ATP) est un nucléotide impliqué dans un grand nombre de processus intracellulaires. L’ATP extracellulaire et son métabolite produisent divers effets sur presque chaque type de cellule de la peau humaine. La connaissance des sources et des effets de l’ATP extracellulaire dans la peau humaine pourra aider à ouvrir la voie à de nouvelles thérapies des lésions cutanées, des inflammations et de nombreux autres troubles.ObjectifsPrésenter au lecteur les connaissances actuelles portant sur les sources et les effets de l’ATP extracellulaire dans la peau humaine et cerner les domaines où une recherche plus poussée est nécessaire afin de clarifier la nature et les mécanismes de ces effets.ConclusionL’ATP extracellulaire semble jouer un rôle direct dans le déclenchement des réponses inflammatoires, régénératrices et fibreuses de la peau à la suite d’un traumatisme, un rôle indirect dans la prolifération et l’apoptose des mélanocytes, et un rôle complexe dans l’immunité adaptative en présence des cellules de Langerhans.AbstractBackgroundThe nucleotide adenosine triphosphate (ATP) has long been known to drive and participate in countless intracellular processes. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin. Knowledge of the sources and effects of extracellular ATP in human skin may help shape new therapies for skin injury, inflammation, and numerous other cutaneous disorders.ObjectiveThe objective of this review is to introduce the reader to current knowledge regarding the sources and effects of extracellular ATP in human skin and to outline areas in which further research is necessary to clarify the nature and mechanism of these effects.ConclusionExtracellular ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity.

[1]  E. Schwiebert,et al.  Extracellular ATP as a signaling molecule for epithelial cells. , 2003, Biochimica et biophysica acta.

[2]  Torello Lotti,et al.  The neuro‐immuno‐cutaneous‐endocrine network: relationship between mind and skin , 2003, Dermatologic therapy.

[3]  M. Idzko,et al.  Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. , 2003, Blood.

[4]  J. Boeynaems,et al.  Involvement of P2Y receptors in the differentiation of haematopoietic cells , 2003, Journal of leukocyte biology.

[5]  F. Di Virgilio,et al.  Alerting and tuning the immune response by extracellular nucleotides , 2003, Journal of leukocyte biology.

[6]  Z. Halata,et al.  Friedrich Sigmund Merkel and his "Merkel cell", morphology, development, and physiology: review and new results. , 2003, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[7]  S. Liang,et al.  Regional differences in sympathetic purinergic transmission along the length of the mouse vas deferens , 2003, Synapse.

[8]  P. Insel,et al.  Hypertonic Stress Increases T Cell Interleukin-2 Expression through a Mechanism That Involves ATP Release, P2 Receptor, and p38 MAPK Activation* , 2003, The Journal of Biological Chemistry.

[9]  R. Nemenoff,et al.  Hypoxic activation of adventitial fibroblasts: role in vascular remodeling. , 2002, Chest.

[10]  D. Erlinge,et al.  P2 Receptor Expression Profiles in Human Vascular Smooth Muscle and Endothelial Cells , 2002, Journal of cardiovascular pharmacology.

[11]  A. Cogo,et al.  Effects of extracellular triphosphate nucleotides and nucleosides on airway smooth muscle cell proliferation. , 2002, American journal of respiratory cell and molecular biology.

[12]  J. Wiley,et al.  Extracellular adenosine 5'-triphosphate induces a loss of CD23 from human dendritic cells via activation of P2X7 receptors. , 2002, International immunology.

[13]  Y. Narisawa,et al.  Spatial relationship between Merkel cells and Langerhans cells in human hair follicles , 2002 .

[14]  J. T. Turner,et al.  Functional P2Y2 Nucleotide Receptors Mediate Uridine 5′-Triphosphate–Induced Intimal Hyperplasia in Collared Rabbit Carotid Arteries , 2002, Circulation.

[15]  A. Bracht,et al.  Inhibition by extracellular ATP of organic anion transport in the perfused rat liver. , 2002, European journal of pharmacology.

[16]  F. Giraud,et al.  Extracellular ATP Induces Phosphatidylserine Externalization Earlier than Nuclear Apoptotic Events in Thymocytes , 2002, Annals of the New York Academy of Sciences.

[17]  DOUGLAS G. Smith,et al.  Diminished neuropeptide levels contribute to the impaired cutaneous healing response associated with diabetes mellitus. , 2002, The Journal of surgical research.

[18]  Kaori Inoue,et al.  P2X purinergic receptor antagonist accelerates skin barrier repair and prevents epidermal hyperplasia induced by skin barrier disruption. , 2002, The Journal of investigative dermatology.

[19]  R. Hipskind,et al.  Adenosine triphosphate stimulates human osteoclast activity via upregulation of osteoblast-expressed receptor activator of nuclear factor-kappa B ligand. , 2002, Bone.

[20]  Lionel Breton,et al.  Effect of age and anatomical site on density of sensory innervation in human epidermis. , 2002, Archives of dermatology.

[21]  T. Luger Neuromediators--a crucial component of the skin immune system. , 2002, Journal of dermatological science.

[22]  A. Kharlamov,et al.  Suramin reduces infarct volume in a model of focal brain ischemia in rats , 2002, Experimental Brain Research.

[23]  K. Klotz,et al.  Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. , 2002, The Journal of investigative dermatology.

[24]  E. Schulman,et al.  Adenosine 5´-Triphosphate Axis in Obstructive Airway Diseases , 2002, American journal of therapeutics.

[25]  M. Goldman,et al.  Extracellular adenine nucleotides modulate cytokine production by human monocyte‐derived dendritic cells: dual effect on IL‐12 and stimulation of IL‐10 , 2002, European journal of immunology.

[26]  C. Fry,et al.  The contractile potency of adenosine triphosphate and ecto-adenosine triphosphatase activity in guinea pig detrusor and detrusor from patients with a stable, unstable or obstructed bladder. , 2002, The Journal of urology.

[27]  J. Troadec,et al.  Multifaceted purinergic regulation of stimulus-secretion coupling in the neurohypophysis. , 2002, Neuro endocrinology letters.

[28]  F. Di Virgilio,et al.  Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. , 2002, Blood.

[29]  K. Jacobson,et al.  Extracellular Adenine Nucleotides Regulate Na+/H+ Exchanger NHE3 Activity in A6-NHE3 Transfectants by a cAMP/PKA-dependent Mechanism , 2002, The Journal of Membrane Biology.

[30]  A. Feranchak,et al.  Adenosine Triphosphate Release and Purinergic Regulation of Cholangiocyte Transport , 2002, Seminars in liver disease.

[31]  G. Burnstock,et al.  ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells , 2002, The Journal of cell biology.

[32]  J. Wagner,et al.  Catecholamines Inhibit the Antigen-Presenting Capability of Epidermal Langerhans Cells1 , 2002, The Journal of Immunology.

[33]  C. Gabel,et al.  Absence of the P2X7 Receptor Alters Leukocyte Function and Attenuates an Inflammatory Response , 2002, The Journal of Immunology.

[34]  P. Holzer,et al.  [Neurogenic inflammation. I. Basic mechanisms, physiology and pharmacology]. , 2002, Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie : AINS.

[35]  I. Kang,et al.  ATP stimulates glucose transport through activation of P2 purinergic receptors in C(2)C(12) skeletal muscle cells. , 2002, Archives of biochemistry and biophysics.

[36]  H. Otani,et al.  Complementary role of extracellular ATP and adenosine in ischemic preconditioning in the rat heart. , 2002, American journal of physiology. Heart and circulatory physiology.

[37]  D. Weissman,et al.  Extracellular mRNA Induces Dendritic Cell Activation by Stimulating Tumor Necrosis Factor-α Secretion and Signaling through a Nucleotide Receptor* , 2002, The Journal of Biological Chemistry.

[38]  R. Granstein The skinny on CD39 in immunity and inflammation , 2002, Nature Medicine.

[39]  Akira Takashima,et al.  CD39 is the dominant Langerhans cell–associated ecto-NTPDase: Modulatory roles in inflammation and immune responsiveness , 2002, Nature Medicine.

[40]  F. Di Virgilio,et al.  Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. , 2002, Blood.

[41]  L. Csernoch,et al.  Effects of extracellular ATP on freshly isolated mouse skeletal muscle cells during pre-natal and post-natal development , 2002, Pflügers Archiv.

[42]  F. Virgilio,et al.  P2 receptors: new potential players in atherosclerosis , 2002, British journal of pharmacology.

[43]  E. Mccleskey,et al.  Cell damage excites nociceptors through release of cytosolic ATP , 2002, Pain.

[44]  N. Garbacki,et al.  Le controle du reseau vasculaire cutane , 2001 .

[45]  K. Varani,et al.  Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line , 2001, British journal of pharmacology.

[46]  T. Skalak,et al.  Selective A(2A) adenosine receptor activation reduces skin pressure ulcer formation and inflammation. , 2001, American journal of physiology. Heart and circulatory physiology.

[47]  S. Stojilkovic,et al.  Signaling by extracellular nucleotides in anterior pituitary cells , 2001, Trends in Endocrinology & Metabolism.

[48]  J. Mcpherson,et al.  Adenosine A2A Receptor Stimulation Reduces Inflammation and Neointimal Growth in a Murine Carotid Ligation Model , 2001, Arteriosclerosis, thrombosis, and vascular biology.

[49]  G. Burnstock Purine-mediated signalling in pain and visceral perception. , 2001, Trends in pharmacological sciences.

[50]  R. Boucher,et al.  UTP as an extracellular signaling molecule. , 2001, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[51]  H. O. Kim,et al.  Purinoceptor-mediated calcium mobilization and proliferation in HaCaT keratinocytes. , 2001, Journal of dermatological science.

[52]  David Julius,et al.  Identification of the platelet ADP receptor targeted by antithrombotic drugs , 2001, Nature.

[53]  P. Fishman,et al.  Differential effect of adenosine on tumor and normal cell growth: Focus on the A3 adenosine receptor , 2001, Journal of cellular physiology.

[54]  F. Di Virgilio,et al.  The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[55]  J. Brown,et al.  Adenosine- and adenine-nucleotide-mediated inhibition of normal and transformed keratinocyte proliferation is dependent upon dipyridamole-sensitive adenosine transport. , 2000, The Journal of investigative dermatology.

[56]  B. Sperlágh,et al.  Ischemic-like condition releases norepinephrine and purines from different sources in superfused rat spleen strips , 2000, Journal of Neuroimmunology.

[57]  S. Endres,et al.  Extracellular ATP and TNF-α Synergize in the Activation and Maturation of Human Dendritic Cells1 , 2000, The Journal of Immunology.

[58]  M. Yamashita,et al.  [Neurotransmitter ATP and cytokine release]. , 2000, Nihon yakurigaku zasshi. Folia pharmacologica Japonica.

[59]  T. K. Harden,et al.  A molecularly identified P2Y receptor simultaneously activates phospholipase C and inhibits adenylyl cyclase and is nonselectively activated by all nucleoside triphosphates. , 2000, Molecular pharmacology.

[60]  I. Kimber,et al.  REVIEWCytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization , 2000, The British journal of dermatology.

[61]  B. Öztürk,et al.  Altered Relaxant Responses to Adenosine and Adenosine 5′-Triphosphate in the Corpus cavernosum from Men and Rats with Diabetes , 2000, Pharmacology.

[62]  G. Babcock,et al.  Altered Gene Expression in Melanocytes Exposed to 4-Tertiary Butyl Phenol (4-TBP): Upregulation of the A2b Adenosine Receptor1 , 1999 .

[63]  G. Schuler,et al.  Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto‐nucleotidases , 1999, FEBS letters.

[64]  F. Di Virgilio,et al.  Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. , 1999, Journal of immunology.

[65]  G. Bilbe,et al.  Regulation of epidermal homeostasis through P2Y2 receptors , 1999, British journal of pharmacology.

[66]  M. Edgerton,et al.  Salivary Histatin 5 Induces Non-lytic Release of ATP fromCandida albicans Leading to Cell Death* , 1999, The Journal of Biological Chemistry.

[67]  R. Granstein,et al.  The effect of neuropeptides/hormones on Langerhans cells. , 1999, Journal of dermatological science.

[68]  J. Butterfield,et al.  ATP modulates anti-IgE-induced release of histamine from human lung mast cells. , 1999, American journal of respiratory cell and molecular biology.

[69]  F. Di Virgilio,et al.  Human primary fibroblasts in vitro express a purinergic P2X7 receptor coupled to ion fluxes, microvesicle formation and IL-6 release. , 1999, Journal of cell science.

[70]  C. Naus,et al.  Connexins regulate calcium signaling by controlling ATP release. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Sreenivas Devidas,et al.  Cystic Fibrosis Transmembrane Conductance Regulator–associated ATP Release Is Controlled by a Chloride Sensor , 1998, The Journal of cell biology.

[72]  G Burnstock,et al.  Receptors for purines and pyrimidines. , 1998, Pharmacological reviews.

[73]  J. Zeuthen,et al.  Ecto‐ATP diphosphohydrolase/CD39 is overexpressed in differentiated human melanomas , 1998, FEBS letters.

[74]  D. Erlinge Extracellular ATP: a growth factor for vascular smooth muscle cells. , 1998, General pharmacology.

[75]  R. Steinman,et al.  A physiologic function for p-glycoprotein (MDR-1) during the migration of dendritic cells from skin via afferent lymphatic vessels. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Hourani,et al.  The regulation of vascular function by P2 receptors: multiple sites and multiple receptors. , 1998, Trends in pharmacological sciences.

[77]  L. Misery,et al.  Skin, immunity and the nervous system , 1997, The British journal of dermatology.

[78]  B. Scharschmidt,et al.  Hepatocellular ATP-binding Cassette Protein Expression Enhances ATP Release and Autocrine Regulation of Cell Volume* , 1997, The Journal of Biological Chemistry.

[79]  F. Di Virgilio,et al.  Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. , 1997, Journal of immunology.

[80]  G. Burnstock,et al.  Early Expression of a Novel Nucleotide Receptor in the Neural Plate of Xenopus Embryos* , 1997, The Journal of Biological Chemistry.

[81]  G. Burnstock,et al.  Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non‐adrenergic inhibitory nerves in the gut , 1997 .

[82]  M. Reznik [Structure and functions of the cutaneous nervous system]. , 1996, Pathologie-biologie.

[83]  G. Burnstock,et al.  P2 purinoceptor‐activated inward currents in follicular oocytes of Xenopus laevis. , 1996, The Journal of physiology.

[84]  B. Wallin,et al.  Lateralization of cutaneous inflammatory responses in patients with unilateral paresis after poliomyelitis , 1996, Journal of Neuroimmunology.

[85]  E. Kawashima,et al.  The Cytolytic P2Z Receptor for Extracellular ATP Identified as a P2X Receptor (P2X7) , 1996, Science.

[86]  S. Seino,et al.  Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. , 1996, Biochemical and biophysical research communications.

[87]  W. Yung,et al.  Cytoplasmic Ca2+ concentrations in intact Merkel cells of an isolated, functioning rat sinus hair preparation , 1996, Experimental Brain Research.

[88]  M. Pittelkow,et al.  Adenosine and adenine nucleotides inhibit the autonomous and epidermal growth factor-mediated proliferation of cultured human keratinocytes. , 1995, The Journal of investigative dermatology.

[89]  E. Rapaport INVOLVEMENT OF ELEVATED INTRACELLULAR AND EXTRACELLULAR ATP IN THE REGULATION OF INSULIN SECRETION: THERAPEUTIC TARGETS IN NON‐INSULIN-DEPENDENT DIABETES MELLITUS , 1995, American journal of therapeutics.

[90]  T. Traut,et al.  Physiological concentrations of purines and pyrimidines , 1994, Molecular and Cellular Biochemistry.

[91]  H. Cantiello,et al.  The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. , 1994, The Journal of biological chemistry.

[92]  L. Heppel,et al.  Stimulation of aged human lung fibroblasts by extracellular ATP via suppression of arachidonate metabolism. , 1993, The Journal of biological chemistry.

[93]  S. Grabbe,et al.  Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide , 1993, Nature.

[94]  G. Wendelschafer‐Crabb,et al.  The innervation of human epidermis , 1993, Journal of the Neurological Sciences.

[95]  A. Giannetti,et al.  Epidermal Langerhans cells are resistant to the permeabilizing effects of extracellular ATP: in vitro evidence supporting a protective role of membrane ATPase. , 1993, The Journal of investigative dermatology.

[96]  S. Dixon,et al.  Extracellular nucleotides elevate [Ca2+]i in rat osteoblastic cells by interaction with two receptor subtypes. , 1992, The American journal of physiology.

[97]  D. Bikle,et al.  Adenosine triphosphate stimulates phosphoinositide metabolism, mobilizes intracellular calcium, and inhibits terminal differentiation of human epidermal keratinocytes. , 1992, The Journal of clinical investigation.

[98]  G. Burnstock,et al.  Effects of purines and pyrimidines on the rat mesenteric arterial bed. , 1991, Circulation research.

[99]  T. Cornwell,et al.  Demonstration of a direct role for myosin light chain kinase in fibroblast‐populated collagen lattice contraction , 1991, Journal of cellular physiology.

[100]  M. Sitkovsky,et al.  Extracellular ATP in T-lymphocyte activation: possible role in effector functions. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[101]  H. Ehrlich,et al.  ATP‐induced cell contraction in dermal fibroblasts: Effects of cAMP and myosin light‐chain kinase , 1986, Journal of cellular physiology.

[102]  H. Ehrlich,et al.  ATP-induced cell contraction with epidermolysis bullosa dystrophica recessive and normal dermal fibroblasts. , 1986, The Journal of investigative dermatology.

[103]  J. Streilein,et al.  Tolerance or hypersensitivity to 2,4-dinitro-1-fluorobenzene: the role of Langerhans cell density within epidermis. , 1980, The Journal of investigative dermatology.

[104]  J. Parker,et al.  Influence of external ATP on permeability and metabolism of dog red blood cells. , 1972, The American journal of physiology.

[105]  G. Burnstock,et al.  Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non‐adrenergic inhibitory nerves in the gut , 1970, British journal of pharmacology.

[106]  P. Holton The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves , 1959, The Journal of physiology.

[107]  T. Jeffcoate,et al.  TEXTBOOK OF GYNAECOLOGY , 1953 .

[108]  A. Szent-Györgyi,et al.  The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart 1 , 1929, The Journal of physiology.

[109]  A. Kribben,et al.  ATP protects, by way of receptor-mediated mechanisms, against hypoxia-induced injury in renal proximal tubules. , 2003, The Journal of laboratory and clinical medicine.

[110]  G. Burnstock,et al.  ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: A novel role for the P2Y2 receptor in bone remodeling , 2002, Journal of cellular biochemistry.

[111]  A. Muscella,et al.  Increase of [Ca(2+)](i) via activation of ATP receptors in PC-Cl3 rat thyroid cell line. , 2002, Cellular signalling.

[112]  E. Jackson P1 and P2 Receptors in the Renal System , 2001 .

[113]  F. Di Virgilio,et al.  P2 receptors meet the immune system. , 2001, Trends in pharmacological sciences.

[114]  G. Burnstock Purinergic Signalling in Lower Urinary Tract , 2001 .

[115]  N. Garbacki,et al.  [Control of cutaneous blood vessels]. , 2001, Revue medicale de Liege.

[116]  S. Endres,et al.  Extracellular ATP and TNF-alpha synergize in the activation and maturation of human dendritic cells. , 2000, Journal of immunology.

[117]  G. Dubyak,et al.  Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. , 1999, American journal of physiology. Cell physiology.

[118]  G. Babcock,et al.  Altered gene expression in melanocytes exposed to 4-tertiary butyl phenol (4-TBP): upregulation of the A2b adenosine receptor 1. , 1999, The Journal of investigative dermatology.

[119]  M. Hilliges,et al.  Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. , 1995, Journal of Investigative Dermatology.

[120]  G. Burnstock,et al.  Purinoceptors: are there families of P2X and P2Y purinoceptors? , 1994, Pharmacology & therapeutics.

[121]  B. Nilius A role for potassium channels in cell proliferation , 1994 .

[122]  G. Burnstock,et al.  New insights into the local regulation of blood flow by perivascular nerves and endothelium. , 1994, British journal of plastic surgery.

[123]  T. Forrester,et al.  Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. , 1992, Cardiovascular research.

[124]  F. Pearce Non-IgE-mediated mast cell stimulation. , 1989, Ciba Foundation symposium.

[125]  G Burnstock,et al.  Is there a basis for distinguishing two types of P2-purinoceptor? , 1985, General pharmacology.

[126]  M. Tolar [Skeletal muscle cells]. , 1980, Ceskoslovenska fysiologie.

[127]  G. Burnstock A basis for distinguishing two types of purinergic receptor , 1978 .

[128]  L. Bolis,et al.  Cell membrane receptors for drugs and hormones : a multidisciplinary approach , 1978 .

[129]  K. Wolff,et al.  Ultrastructural localization of nucleoside triphosphatase in Langerhans cells. , 1967, The Journal of investigative dermatology.