Complex projective synchronization in coupled chaotic complex dynamical systems

In previous papers, the projective factors are always chosen as real numbers, real matrices, or even real-valued functions, which means the coupled systems evolve in the same or inverse direction simultaneously. However, in many practical situations, the drive-response systems may evolve in different directions with a constant intersection angle. Therefore, the projective synchronization with respect to a complex factor, called complex projective synchronization (CPS), should be taken into consideration. In this paper, based on Lyapunov stability theory, three typical chaotic complex dynamical systems are considered and the corresponding controllers are designed to achieve the complex projective synchronization. Further, an adaptive control method is adopted to design a universal controller for partially linear systems. Numerical examples are provided to show the effectiveness of the proposed method.

[1]  Dibakar Ghosh,et al.  Lag and anticipatory synchronization based parameter estimation scheme in modulated time-delayed systems , 2010 .

[2]  Xingyuan Wang,et al.  Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems , 2010 .

[3]  Kestutis Pyragas SYNCHRONIZATION OF COUPLED TIME-DELAY SYSTEMS : ANALYTICAL ESTIMATIONS , 1998 .

[4]  Gamal M. Mahmoud,et al.  On chaos synchronization of a complex two coupled dynamos system , 2007 .

[5]  Michael Small,et al.  Generation of clusters in complex dynamical networks via pinning control , 2008 .

[6]  Manfeng Hu,et al.  Hybrid projective synchronization in a chaotic complex nonlinear system , 2008, Math. Comput. Simul..

[7]  Chuandong Li,et al.  Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication , 2004 .

[8]  Hongtao Lu,et al.  Hyperchaotic secure communication via generalized function projective synchronization , 2011 .

[9]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[10]  Yuanwei Jing,et al.  Modified projective synchronization of chaotic systems with disturbances via active sliding mode control , 2010 .

[11]  Gamal M. Mahmoud,et al.  Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system , 2007 .

[12]  WU Zhao-Yan,et al.  Adaptive Function Projective Synchronization of Discrete Chaotic Systems with Unknown Parameters , 2010 .

[13]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[14]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[15]  Mark J. McGuinness,et al.  The complex Lorenz equations , 1982 .

[16]  Da Lin,et al.  Module-phase synchronization in complex dynamic system , 2010, Appl. Math. Comput..

[17]  Wang Bing-Hong,et al.  An Efficient Control Strategy of Epidemic Spreading on Scale-Free Networks , 2009 .

[18]  J Kurths,et al.  Global phase synchronization in an array of time-delay systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  S. M. Lee,et al.  Secure communication based on chaotic synchronization via interval time-varying delay feedback control , 2011 .

[20]  Vladimir L. Derbov,et al.  The Complex Lorenz Model: Geometric Structure, Homoclinic Bifurcation and One-Dimensional Map , 1998 .

[21]  Hongyue Du,et al.  Function projective synchronization in coupled chaotic systems , 2010 .

[22]  Zuo-Lei Wang,et al.  Anti-synchronization of Liu system and Lorenz system with known or unknown parameters , 2009 .

[23]  Andrew Chi Sing Leung,et al.  Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control , 2011 .

[24]  Ping Liu,et al.  Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters , 2011 .

[25]  Tianping Chen,et al.  Pinning Complex Networks by a Single Controller , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Manfeng Hu,et al.  Adaptive feedback controller for projective synchronization , 2008 .

[27]  Synchronizing the Noise-Perturbed Rössler Hyperchaotic System via Sliding Mode Control , 2011 .

[28]  Emad E. Mahmoud,et al.  Complete synchronization of chaotic complex nonlinear systems with uncertain parameters , 2010 .

[29]  Yeong-Jeu Sun Generalized projective synchronization for a class of chaotic systems with parameter mismatching, unknown external excitation, and uncertain input nonlinearity , 2011 .

[30]  Guilin Wen,et al.  Designing Hopf limit circle to dynamical systems via modified projective synchronization , 2011 .

[31]  Emad E. Mahmoud,et al.  Chaos synchronization of two different chaotic complex Chen and Lü systems , 2009 .

[32]  Dibakar Ghosh,et al.  Generalized projective synchronization in time-delayed systems: nonlinear observer approach. , 2009, Chaos.

[33]  Tassos Bountis,et al.  Active Control and Global Synchronization of the Complex Chen and lÜ Systems , 2007, Int. J. Bifurc. Chaos.

[34]  Meng Zhan,et al.  Projective synchronization of two coupled excitable spiral waves. , 2011, Chaos.

[35]  Seung‐Yeal Ha,et al.  Complete synchronization of Kuramoto oscillators with finite inertia , 2011 .

[36]  Yongguang Yu,et al.  Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design , 2011 .