Nonlocal effects in the self-consistent nonlinear 3D propagation of an ultrastrong, femtosecond laser pulse in plasmas

AbstractA theoretical investigation of the interaction of an ultra-strong and ultra-short laser pulse with unmagnetized plasma is carried out and applied to the specifications of the Ti:Sa Frascati Laser for Acceleration and Multidisciplinary Experiments (FLAME). The analysis is based on the Lorentz-Maxwell fluid model in the fully relativistic regime taking the pancake approximation. The mathematical model yields Zakharov-like equations, which gives a satisfactory description of a wide range of laser-plasma acceleration configurations. It is shown that the pancake structure is unstable in two dimensions (2D) but the collapse occurs over a distance much longer than the typical active plasma length.

[1]  P. Sprangle,et al.  Interaction of ultrahigh laser fields with beams and plasmas , 1992 .

[2]  U. Peschel,et al.  Temporal solitary waves near linear resonances , 1997 .

[3]  A. P. Matafonov,et al.  Generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets , 2008 .

[4]  W. A. Gillespie,et al.  High quality electron beams from a laser wakefield accelerator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[5]  Donald P. Umstadter,et al.  Relativistic laser–plasma interactions , 2003 .

[6]  Ole Bang,et al.  Collapse arrest and soliton stabilization in nonlocal nonlinear media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Xiantu He,et al.  Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction , 2006 .

[8]  T. Antonsen,et al.  Quasistatic magnetic field generated by a short laser pulse in an underdense plasma , 1997 .

[9]  G. Miele,et al.  A thermal-wave model for relativistic-charged-particle beam propagation , 1991 .

[10]  P. d'Oliveira,et al.  Prepulse effect on intense femtosecond laser pulse propagation in gas , 2006 .

[11]  Eric Esarey,et al.  Overview of plasma-based accelerator concepts , 1996 .

[12]  I. Kourakis,et al.  Spatial evolution of a q-Gaussian laser beam in relativistic plasma , 2010 .

[13]  O. Bang,et al.  Solitons in nonlocal nonlinear media: exact solutions. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Blasberg,et al.  Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[15]  J. Diels 2 – Femtosecond Optics , 2006 .

[16]  Maurizio Lontano,et al.  Nonlinear development of the weibel instability and magnetic field generation in collisionless plasmas , 1996 .

[17]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[18]  B. Luther-Davies,et al.  Analytic solution for soliton propagation in a nonlinear saturable medium. , 1992, Optics letters.

[19]  Eric H. Esarey,et al.  Laser wakefield acceleration and relativistic optical guiding , 1988 .

[20]  M. Ferrario,et al.  An integrated approach to ultraintense laser sciences: The PLASMON-X project , 2009 .

[21]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[22]  Chen,et al.  Acceleration of electrons by the interaction of a bunched electron beam with a plasma. , 1985, Physical review letters.

[23]  D. Blume,et al.  Dipolar Bose-Einstein condensates with dipole-dependent scattering length , 2006, cond-mat/0605315.

[24]  J. T. Mendonça,et al.  Plasma based charged-particle accelerators , 2004 .

[25]  Victor Malka Laser Plasma Accelerators , 2013 .

[26]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[27]  Y. Kivshar,et al.  Suppression of soliton transverse instabilities in nonlocal nonlinear media , 2007, 0708.2596.

[28]  Jean-Claude Diels,et al.  Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale , 1996 .

[29]  D. Jovanović,et al.  Generation of quasi-stationary magnetic fields in turbulent plasmas , 1984 .

[30]  G. Miele,et al.  Thermal wave model for nonlinear longitudinal dynamics in particle accelerators , 1993 .

[31]  Conceptual design of a laser wakefield acceleration experiment with external bunch injection , 2006 .

[32]  A. Sergeev,et al.  Structure of steady-state solitons in systems with a nonlocal nonlinearity , 1980 .

[33]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[34]  F. Pegoraro,et al.  Perpendicular electron trapping associated with nonlinear whistlers , 2001 .

[35]  C. Vicario,et al.  A self-injection acceleration test experiment for the FLAME laser , 2010 .

[36]  G. Shvets,et al.  Electron self-injection and trapping into an evolving plasma bubble. , 2009, Physical review letters.

[37]  M. Lisak,et al.  Nonlocal effects in high-energy charged-particle beams. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[39]  D. Blume,et al.  Scattering length instability in dipolar Bose-Einstein condensates. , 2006, Physical review letters.

[40]  Alexander Pukhov,et al.  Strong field interaction of laser radiation , 2003 .

[41]  A. Berntson,et al.  Modulational instabilities within the thermal wave model description of high energy charged particle beam dynamics , 1999 .

[42]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[43]  Z. Sheng,et al.  Relativistic Laser Plasma Interaction , 2002 .

[44]  O. Bang,et al.  Ring vortex solitons in nonlocal nonlinear media , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[45]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[46]  O. Bang,et al.  Stability of two-dimensional spatial solitons in nonlocal nonlinear media. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  See Leang Chin,et al.  Laser ionization of noble gases by Coulomb-barrier suppression , 1991 .

[48]  A Pak,et al.  Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. , 2010, Physical review letters.

[49]  M. Segev,et al.  Periodic solitons in nonlocal nonlinear media. , 2007, Optics letters.

[50]  Zulfikar Najmudin,et al.  Acceleration of injected electrons in a laser wakefield experiment , 1999 .

[51]  D Mihalache,et al.  Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  M. Belić,et al.  Two-dimensional spatial solitons in highly nonlocal nonlinear media , 2009 .

[53]  See Leang Chin,et al.  Femtosecond Laser Filamentation , 2009 .

[54]  M. N. Rosenbluth,et al.  EXCITATION OF PLASMA WAVES BY TWO LASER BEAMS. , 1972 .

[55]  M. Belić,et al.  Robust three-dimensional spatial soliton clusters in strongly nonlocal media , 2008 .

[56]  Simpson,et al.  Experimental observation of plasma wake-field acceleration. , 1988, Physical review letters.