Spliceostatin A interaction with SF3B limits U1 snRNP availability and causes premature cleavage and polyadenylation.

[1]  Takehiro Suzuki,et al.  Splicing modulators elicit global translational repression by condensate-prone proteins translated from introns , 2020, bioRxiv.

[2]  Haixin Lei,et al.  Nuclear retention element recruits U1 snRNP components to restrain spliced lncRNAs in the nucleus , 2019, RNA biology.

[3]  M. Ellis,et al.  Long non-coding RNA MALAT1 suppresses breast cancer metastasis , 2018, Nature Genetics.

[4]  Q. Zhang,et al.  U1 snRNP regulates chromatin retention of noncoding RNAs , 2018, Nature.

[5]  N. Munshi,et al.  Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity , 2018, Leukemia.

[6]  M. Warmuth,et al.  H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers , 2018, Nature Medicine.

[7]  G. Dreyfuss,et al.  U1 snRNP telescripting regulates a size–function-stratified human genome , 2017, Nature Structural & Molecular Biology.

[8]  Nicholas T. Ingolia,et al.  The Growing Toolbox for Protein Synthesis Studies. , 2017, Trends in biochemical sciences.

[9]  M. Warmuth,et al.  Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A–SF3b complex , 2017, Nature Communications.

[10]  Y. Hayashizaki,et al.  Global analysis of pre-mRNA subcellular localization following splicing inhibition by spliceostatin A , 2017, RNA.

[11]  J. Rinn,et al.  Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs , 2016, bioRxiv.

[12]  Jill P. Mesirov,et al.  RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure , 2016, Cell.

[13]  G. Ast,et al.  SF3B1 association with chromatin determines splicing outcomes. , 2015, Cell reports.

[14]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[15]  Sharon R Grossman,et al.  RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites , 2014, Cell.

[16]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[17]  Piero Carninci,et al.  Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing , 2014, Genome research.

[18]  T. Takayama,et al.  High antitumor activity of pladienolide B and its derivative in gastric cancer , 2013, Cancer science.

[19]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[20]  J. Valcárcel,et al.  The spliceosome as a target of novel antitumour drugs , 2012, Nature Reviews Drug Discovery.

[21]  Minoru Yoshida,et al.  Splicing in oncogenesis and tumor suppression , 2012, Cancer science.

[22]  Larry N. Singh,et al.  U1 snRNP Determines mRNA Length and Regulates Isoform Expression , 2012, Cell.

[23]  A. Mayeda,et al.  Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. , 2012, RNA.

[24]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[25]  M. Stratton,et al.  Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. , 2011, The New England journal of medicine.

[26]  S. Sugano,et al.  Frequent pathway mutations of splicing machinery in myelodysplasia , 2011, Nature.

[27]  M. Ohno,et al.  Multiple factors in the early splicing complex are involved in the nuclear retention of pre‐mRNAs in mammalian cells , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[28]  M. Furuno,et al.  Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1 , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[29]  J. Valcárcel,et al.  Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. , 2011, Genes & development.

[30]  R. Reed,et al.  The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. , 2011, Genes & development.

[31]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[32]  Larry N. Singh,et al.  U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation , 2010, Nature.

[33]  B. Blencowe,et al.  The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. , 2010, Molecular cell.

[34]  M. Jurica,et al.  Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation , 2010, Nucleic acids research.

[35]  Joseph K. Pickrell,et al.  Understanding mechanisms underlying human gene expression variation with RNA sequencing , 2010, Nature.

[36]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[37]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[38]  N. Kataoka,et al.  Isolation and characterization of post-splicing lariat–intron complexes , 2008, Nucleic acids research.

[39]  David L. Spector,et al.  3′ End Processing of a Long Nuclear-Retained Noncoding RNA Yields a tRNA-like Cytoplasmic RNA , 2008, Cell.

[40]  M. Hagiwara,et al.  Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA , 2007, Nature Chemical Biology.

[41]  T. Owa,et al.  Splicing factor SF3b as a target of the antitumor natural product pladienolide , 2007, Nature Chemical Biology.

[42]  Henning Urlaub,et al.  Protein Composition and Electron Microscopy Structure of Affinity-Purified Human Spliceosomal B Complexes Isolated under Physiological Conditions , 2006, Molecular and Cellular Biology.

[43]  T. Yamori,et al.  Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. , 2004, The Journal of antibiotics.

[44]  M. Matsufuji,et al.  Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. I. Taxonomy, fermentation, isolation and screening. , 2004, The Journal of antibiotics.

[45]  Y. Mizui,et al.  Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. II. Physico-chemical properties and structure elucidation. , 2004, The Journal of antibiotics.

[46]  M. Wickens,et al.  The C-terminal domain of RNA polymerase II couples mRNA processing to transcription , 1997, Nature.

[47]  Minoru Yoshida,et al.  MALAT1 long non-coding RNA in cancer. , 2016, Biochimica et biophysica acta.