Necessary optimality conditions for minimax programming problems with mathematical constraints

In this paper, necessary optimality conditions in terms of upper and/or lower subdifferentials of both cost and constraint functions are derived for minimax optimization problems with inequality, equality and geometric constraints in the setting of non-differentiatiable and non-Lipschitz functions in Asplund spaces. Necessary optimality conditions in the fuzzy form are also presented. An application of the fuzzy necessary optimality condition is shown by considering minimax fractional programming problem.

[1]  Karolin Papst,et al.  Techniques Of Variational Analysis , 2016 .

[2]  Truong Q. Bao,et al.  Subdifferential necessary conditions in set-valued optimization problems with equilibrium constraints , 2014 .

[3]  B. Mordukhovich,et al.  Subdifferential necessary conditions for extremal solutions to set-valued optimization problems with equilibrium constraints , 2011 .

[4]  Boris S. Mordukhovich,et al.  Relative Pareto minimizers for multiobjective problems: existence and optimality conditions , 2009, Math. Program..

[5]  Boris Polyak,et al.  B.S. Mordukhovich. Variational Analysis and Generalized Differentiation. I. Basic Theory, II. Applications , 2009 .

[6]  Siegfried Schaible,et al.  Fractional Programming , 2009, Encyclopedia of Optimization.

[7]  B. Mordukhovich,et al.  Suboptimality conditions for mathematical programs with equilibrium constraints , 2008 .

[8]  Boris S. Mordukhovich,et al.  Necessary Conditions in Multiobjective Optimization with Equilibrium Constraints , 2007 .

[9]  N. D. Yen,et al.  Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming , 2006 .

[10]  Boris S. Mordukhovich,et al.  Necessary Conditions in Nonsmooth Minimization via Lower and Upper Subgradients , 2004 .

[11]  Boris S. Mordukhovich,et al.  Nonconvex differential calculus for infinite-dimensional multifunctions , 1996 .

[12]  Jacques A. Ferland,et al.  Algorithms for generalized fractional programming , 1991, Math. Program..

[13]  R. Rockafellar Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .

[14]  I. Ekeland On the variational principle , 1974 .