Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem
暂无分享,去创建一个
[1] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[2] Xiaozhe Hu,et al. Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems" , 2011, Math. Comput..
[3] María G. Armentano,et al. The effect of reduced integration in the Steklov eigenvalue problem , 2004 .
[4] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[5] Claudio Canuto,et al. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .
[6] X. Hu,et al. Two-Grid Methods for Maxwell Eigenvalue Problems , 2014, SIAM J. Numer. Anal..
[7] Jinchao Xu,et al. A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..
[8] Pan Cheng,et al. Nyström methods and extrapolation for solving Steklov eigensolutions and its application in elasticity , 2012 .
[9] K. Ott,et al. The mixed problem in Lipschitz domains with general decompositions of the boundary , 2011, 1111.1468.
[10] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[11] Roland Glowinski,et al. An introduction to the mathematical theory of finite elements , 1976 .
[12] C.-S. Chien,et al. A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..
[13] Claudio Padra,et al. A posteriori error estimates for the Steklov eigenvalue problem , 2008 .
[14] Rodolfo Rodríguez,et al. An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations , 2011 .
[15] John E. Osborn,et al. APPROXIMATION OF STEKLOV EIGENVALUES OF NON-SELFADJOINT SECOND ORDER ELLIPTIC OPERATORS , 1972 .
[16] Jinchao Xu,et al. Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..
[17] Anahí Dello Russo,et al. A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems , 2011, Comput. Math. Appl..
[18] Aihui Zhou,et al. Finite Element Methods for Eigenvalue Problems , 2016 .
[19] Aihui Zhou,et al. Three-Scale Finite Element Discretizations for Quantum Eigenvalue Problems , 2007, SIAM J. Numer. Anal..
[20] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[21] Hehu Xie,et al. A type of multilevel method for the Steklov eigenvalue problem , 2014 .
[22] B. Guo,et al. REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA , Ih THE TRACE SPACES AND APPLICATION TO THE BOUNDARY VALUE PROBLEMS WITH NONHOMOGENEOUS BOUNDARY CONDITIONS , 2022 .
[23] Ivo Babuška,et al. Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .
[24] Ana Alonso,et al. Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods , 2009 .
[25] Yidu Yang,et al. Nonconforming finite element approximations of the Steklov eigenvalue problem , 2009 .
[26] Peter Monk,et al. Stekloff Eigenvalues in Inverse Scattering , 2016, SIAM J. Appl. Math..
[27] Jinchao Xu,et al. Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.
[28] JinHuang,et al. THE MECHANICAL QUADRATURE METHODS AND THEIR EXTRAPOLATION FOR SOLVING BIE OF STEKLOV EIGENVALUE PROBLEMS , 2004 .
[29] Lei Zhang,et al. Multiscale Asymptotic Method for Steklov Eigenvalue Equations in Composite Media , 2013, SIAM J. Numer. Anal..
[30] Yidu Yang,et al. Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems , 2014 .
[31] Jinchao Xu,et al. Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..
[32] Hao Li,et al. Local and Parallel Finite Element Discretizations for Eigenvalue Problems , 2013, SIAM J. Sci. Comput..
[33] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[34] Hai Bi,et al. Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..
[35] Pedro Morin,et al. Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems , 2011 .
[36] Andrey B. Andreev,et al. Isoparametric finite-element approximation of a Steklov eigenvalue problem , 2004 .
[37] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[38] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[39] Qun Lin,et al. Extrapolation and superconvergence of the Steklov eigenvalue problem , 2010, Adv. Comput. Math..
[40] M. Mitrea,et al. The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains , 2007 .
[41] Yinnian He,et al. Newton Iterative Parallel Finite Element Algorithm for the Steady Navier-Stokes Equations , 2010, J. Sci. Comput..