Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem

In this paper, for a new Stekloff eigenvalue problem which is non-selfadjoint and not $H^1$-elliptic, we establish and analyze two kinds of two-grid discretization scheme and a local finite element scheme. We present the error estimates of approximations of two-grid discretizations. We also prove a local error estimate which is suitable for the case that the local refined region contains singular points lying on the boundary of domain. Numerical experiments are reported finally to show the efficiency of our schemes.

[1]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[2]  Xiaozhe Hu,et al.  Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems" , 2011, Math. Comput..

[3]  María G. Armentano,et al.  The effect of reduced integration in the Steklov eigenvalue problem , 2004 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[6]  X. Hu,et al.  Two-Grid Methods for Maxwell Eigenvalue Problems , 2014, SIAM J. Numer. Anal..

[7]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[8]  Pan Cheng,et al.  Nyström methods and extrapolation for solving Steklov eigensolutions and its application in elasticity , 2012 .

[9]  K. Ott,et al.  The mixed problem in Lipschitz domains with general decompositions of the boundary , 2011, 1111.1468.

[10]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[11]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[12]  C.-S. Chien,et al.  A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..

[13]  Claudio Padra,et al.  A posteriori error estimates for the Steklov eigenvalue problem , 2008 .

[14]  Rodolfo Rodríguez,et al.  An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations , 2011 .

[15]  John E. Osborn,et al.  APPROXIMATION OF STEKLOV EIGENVALUES OF NON-SELFADJOINT SECOND ORDER ELLIPTIC OPERATORS , 1972 .

[16]  Jinchao Xu,et al.  Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..

[17]  Anahí Dello Russo,et al.  A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems , 2011, Comput. Math. Appl..

[18]  Aihui Zhou,et al.  Finite Element Methods for Eigenvalue Problems , 2016 .

[19]  Aihui Zhou,et al.  Three-Scale Finite Element Discretizations for Quantum Eigenvalue Problems , 2007, SIAM J. Numer. Anal..

[20]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[21]  Hehu Xie,et al.  A type of multilevel method for the Steklov eigenvalue problem , 2014 .

[22]  B. Guo,et al.  REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA , Ih THE TRACE SPACES AND APPLICATION TO THE BOUNDARY VALUE PROBLEMS WITH NONHOMOGENEOUS BOUNDARY CONDITIONS , 2022 .

[23]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .

[24]  Ana Alonso,et al.  Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods , 2009 .

[25]  Yidu Yang,et al.  Nonconforming finite element approximations of the Steklov eigenvalue problem , 2009 .

[26]  Peter Monk,et al.  Stekloff Eigenvalues in Inverse Scattering , 2016, SIAM J. Appl. Math..

[27]  Jinchao Xu,et al.  Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.

[28]  JinHuang,et al.  THE MECHANICAL QUADRATURE METHODS AND THEIR EXTRAPOLATION FOR SOLVING BIE OF STEKLOV EIGENVALUE PROBLEMS , 2004 .

[29]  Lei Zhang,et al.  Multiscale Asymptotic Method for Steklov Eigenvalue Equations in Composite Media , 2013, SIAM J. Numer. Anal..

[30]  Yidu Yang,et al.  Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems , 2014 .

[31]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[32]  Hao Li,et al.  Local and Parallel Finite Element Discretizations for Eigenvalue Problems , 2013, SIAM J. Sci. Comput..

[33]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[34]  Hai Bi,et al.  Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..

[35]  Pedro Morin,et al.  Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems , 2011 .

[36]  Andrey B. Andreev,et al.  Isoparametric finite-element approximation of a Steklov eigenvalue problem , 2004 .

[37]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[38]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[39]  Qun Lin,et al.  Extrapolation and superconvergence of the Steklov eigenvalue problem , 2010, Adv. Comput. Math..

[40]  M. Mitrea,et al.  The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains , 2007 .

[41]  Yinnian He,et al.  Newton Iterative Parallel Finite Element Algorithm for the Steady Navier-Stokes Equations , 2010, J. Sci. Comput..