From high-resolution AFM topographs to atomic models of supramolecular assemblies.

Atomic force microscopy (AFM) has developed into a powerful tool in membrane biology. AFM features an outstanding signal-to-noise ratio that allows substructures on individual macromolecules to be visualized. Most recently, AFM topographs have shown the supramolecular assembly of the bacterial photosynthetic complexes in native membranes. Here, we have determined the translational and rotational degrees of freedom of the complexes in AFM images of multi-protein assemblies, in order to build realistic atomic models of supramolecular assemblies by docking high-resolution structures into the topographs. Membrane protein assemblies of megadalton size comprising several hundreds of polypeptide chains and pigments were built with Angstrom precision.

[1]  Klaus Schulten,et al.  Photosynthetic apparatus of purple bacteria , 2002, Quarterly Reviews of Biophysics.

[2]  S. Scheuring,et al.  Dynamics and diffusion in photosynthetic membranes from rhodospirillum photometricum. , 2006, Biophysical journal.

[3]  S. Scheuring,et al.  Membrane insertion of Rhodopseudomonas acidophila light harvesting complex 2 investigated by high resolution AFM. , 2005, Journal of structural biology.

[4]  Patrick Polzer,et al.  Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus , 2005, Science.

[5]  K Schulten,et al.  Architecture and mechanism of the light-harvesting apparatus of purple bacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Genji Kurisu,et al.  Structure of the Cytochrome b6f Complex of Oxygenic Photosynthesis: Tuning the Cavity , 2003, Science.

[7]  Krzysztof Palczewski,et al.  Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes* , 2003, Journal of Biological Chemistry.

[8]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[9]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[10]  K. Schulten,et al.  The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. , 1996, Structure.

[11]  A. Engel,et al.  Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. , 1999, Biophysical journal.

[12]  Cees Otto,et al.  The native architecture of a photosynthetic membrane , 2004, Nature.

[13]  S. Scheuring,et al.  High‐resolution AFM topographs of Rubrivivax gelatinosus light‐harvesting complex LH2 , 2001, The EMBO journal.

[14]  Simon Scheuring,et al.  Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum , 2004, The EMBO journal.

[15]  A. Engel,et al.  Observing membrane protein diffusion at subnanometer resolution. , 2003, Journal of molecular biology.

[16]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[17]  J Deisenhofer,et al.  X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. , 1984, Journal of molecular biology.

[18]  Simon Scheuring,et al.  Structure of the Dimeric PufX-containing Core Complex of Rhodobacter blasticus by in Situ Atomic Force Microscopy* , 2005, Journal of Biological Chemistry.

[19]  J. Popot,et al.  An atypical haem in the cytochrome b6f complex , 2003, Nature.

[20]  Simon Scheuring,et al.  Chromatic Adaptation of Photosynthetic Membranes , 2005, Science.

[21]  Sergio Marco,et al.  Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  F. Daldal,et al.  X-Ray Structure of Rhodobacter Capsulatus Cytochrome bc1: Comparison with its Mitochondrial and Chloroplast Counterparts , 2004, Photosynthesis Research.

[23]  Henning Stahlberg,et al.  Structural biology: Proton-powered turbine of a plant motor , 2000, Nature.

[24]  T. Walz,et al.  Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 A, LH1 and RC-LH1 at 25 A. , 1998, Journal of molecular biology.

[25]  S. Scheuring,et al.  AFM characterization of tilt and intrinsic flexibility of Rhodobacter sphaeroides light harvesting complex 2 (LH2). , 2003, Journal of molecular biology.

[26]  Simon Scheuring,et al.  Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum. , 2005, Journal of structural biology.

[27]  W. O. Saxton,et al.  The correlation averaging of a regularly arranged bacterial cell envelope protein , 1982, Journal of microscopy.

[28]  Thomas Walz,et al.  The supramolecular architecture of junctional microdomains in native lens membranes , 2007, EMBO reports.

[29]  J Deisenhofer,et al.  Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. , 1997, Science.

[30]  A. Engel Microscopic assessment of membrane protein structure and function , 2003, Histochemistry and Cell Biology.

[31]  A. Engel,et al.  Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. , 1995, Science.

[32]  T O Yeates,et al.  Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[34]  A. Engel,et al.  Atomic-force microscopy: Rhodopsin dimers in native disc membranes , 2003, Nature.

[35]  G Büldt,et al.  Atomic force microscopy of native purple membrane. , 2000, Biochimica et biophysica acta.

[36]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[37]  S. Scheuring,et al.  The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. , 2006, Journal of molecular biology.

[38]  Simon Scheuring,et al.  Watching the photosynthetic apparatus in native membranes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Borgnia,et al.  High resolution AFM topographs of the Escherichia coli water channel aquaporin Z , 1999, The EMBO journal.