Plasma membrane events associated with the meiotic divisions in the amphibian oocyte: insights into the evolution of insulin transduction systems and cell signaling

[1]  G. Morrill,et al.  Plasma membrane events associated with the meiotic divisions in the amphibian oocyte: insights into the evolution of insulin transduction systems and cell signaling , 2013, BMC Developmental Biology.

[2]  A. Askari,et al.  Caveolin–Na/K-ATPase interactions: Role of transmembrane topology in non-genomic steroid signal transduction , 2012, Steroids.

[3]  G. Morrill,et al.  Progesterone-induced changes in the phosphoryl potential during the meiotic divisions in amphibian oocytes: Role of Na/K-ATPase , 2011, BMC Developmental Biology.

[4]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[5]  F. Bezanilla,et al.  Ouabain Binding Site in a Functioning Na+/K+ ATPase* , 2011, The Journal of Biological Chemistry.

[6]  Lijun Liu,et al.  Comparative Properties of Caveolar and Noncaveolar Preparations of Kidney Na+/K+-ATPase , 2011, Biochemistry.

[7]  P. Nissen,et al.  Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase. , 2011, Journal of structural biology.

[8]  D. Loo,et al.  Biology of human sodium glucose transporters. , 2011, Physiological reviews.

[9]  Daniel W. A. Buchan,et al.  Protein annotation and modelling servers at University College London , 2010, Nucleic Acids Res..

[10]  J. Angleson,et al.  IGF-1 Receptors in Xenopus laevis Ovarian Follicle Cells Support the Oocyte Maturation Response , 2010, Biology of reproduction.

[11]  P. Strålfors,et al.  Rapid Insulin-Dependent Endocytosis of the Insulin Receptor by Caveolae in Primary Adipocytes , 2009, PloS one.

[12]  Arne Elofsson,et al.  TOPCONS: consensus prediction of membrane protein topology , 2009, Nucleic Acids Res..

[13]  Caili Hao,et al.  High-affinity insulin binding: insulin interacts with two receptor ligand binding sites. , 2008, Biochemistry.

[14]  A. Takeuchi,et al.  The ion pathway through the opened Na+,K+-ATPase pump , 2008, Nature.

[15]  K. Geering Functional roles of Na,K-ATPase subunits , 2008, Current opinion in nephrology and hypertension.

[16]  M. Kirkham,et al.  Evolutionary analysis and molecular dissection of caveola biogenesis , 2008, Journal of Cell Science.

[17]  R. Zardoya,et al.  Evolution of the insulin receptor family and receptor isoform expression in vertebrates. , 2008, Molecular biology and evolution.

[18]  G. Morrill,et al.  Progesterone and subsequent polar metabolites are essential for completion of the first meiotic division in amphibian oocytes , 2008, Molecular and Cellular Endocrinology.

[19]  Wen-Lian Hsu,et al.  Enhanced membrane protein topology prediction using a hierarchical classification method and a new scoring function. , 2008, Journal of proteome research.

[20]  M. Lawrence,et al.  Structural insights into ligand‐induced activation of the insulin receptor , 2007, Acta physiologica.

[21]  J. Trejo,et al.  Protease-activated receptor signaling: new roles and regulatory mechanisms , 2007, Current opinion in hematology.

[22]  Mark M. Rasenick,et al.  Lipid raft microdomains and neurotransmitter signalling , 2007, Nature Reviews Neuroscience.

[23]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[24]  Lijun Liu,et al.  Beta-subunit of cardiac Na+-K+-ATPase dictates the concentration of the functional enzyme in caveolae. , 2006, American journal of physiology. Cell physiology.

[25]  W. Mäntele,et al.  Inhibition and partial reactions of Na,K-ATPase studied by Fourier transform infrared difference spectroscopy. , 2006, Biopolymers.

[26]  C. Kahn,et al.  Critical nodes in signalling pathways: insights into insulin action , 2006, Nature Reviews Molecular Cell Biology.

[27]  J. Erlichman,et al.  The steroid-binding subunit of the Na/K-ATPase as a progesterone receptor on the amphibian oocyte plasma membrane , 2005, Steroids.

[28]  Masami Ikeda,et al.  ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability , 2004, Nucleic Acids Res..

[29]  S. E. Sadler,et al.  Stimulation of Xenopus laevis Oocyte Maturation by Methyl-β-Cyclodextrin1 , 2004 .

[30]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[31]  J. Hutton,et al.  Insulin secretory granule biogenesis and the proinsulin-processing endopeptidases , 1994, Diabetologia.

[32]  J. Dumont,et al.  Oogenesis in Xenopus laevis (Daudin) , 1975, Cell and Tissue Research.

[33]  S. E. Sadler,et al.  Stimulation of Xenopus laevis oocyte maturation by methyl-beta-cyclodextrin. , 2004, Biology of reproduction.

[34]  B. Rossier The epithelial sodium channel: activation by membrane-bound serine proteases. , 2004, Proceedings of the American Thoracic Society.

[35]  R. Boucher,et al.  Serine protease activation of near-silent epithelial Na+ channels. , 2004, American journal of physiology. Cell physiology.

[36]  T. Hennet,et al.  Differential regulation of the zebrafish orthopedia1 gene during fate determination of diencephalic neurons , 2006, BMC Developmental Biology.

[37]  B. Woodward,et al.  Insulin-stimulated cytosol alkalinization facilitates optimal activation of glucose transport in cardiomyocytes. , 2002, American journal of physiology. Endocrinology and metabolism.

[38]  M. White,et al.  Molecular insights into insulin action and secretion , 2002, European journal of clinical investigation.

[39]  Zijian Xie,et al.  Na(+)/K(+)-ATPase as a signal transducer. , 2002, European journal of biochemistry.

[40]  A. L. Goldin,et al.  Evolution of voltage-gated Na(+) channels. , 2002, The Journal of experimental biology.

[41]  A. Klip,et al.  Insulin increases plasma membrane content and reduces phosphorylation of Na(+)-K(+) pump alpha(1)-subunit in HEK-293 cells. , 2001, American journal of physiology. Cell physiology.

[42]  M. Lisanti,et al.  A Molecular Dissection of Caveolin-1 Membrane Attachment and Oligomerization , 2000, The Journal of Biological Chemistry.

[43]  Liam J. McGuffin,et al.  The PSIPRED protein structure prediction server , 2000, Bioinform..

[44]  M. Saier,et al.  Eukaryotic transmembrane solute transport systems. , 1999, International review of cytology.

[45]  G. Blanco,et al.  Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. , 1998, American journal of physiology. Renal physiology.

[46]  M. Lisanti,et al.  Interaction of a Receptor Tyrosine Kinase, EGF-R, with Caveolins , 1997, The Journal of Biological Chemistry.

[47]  N. Sherwood,et al.  Ancient divergence of insulin and insulin-like growth factor. , 1997, DNA and cell biology.

[48]  B. Greenstein,et al.  Insulin receptors on Xenopus laevis oocytes: effects of injection of ob/ob mouse liver mRNA. , 1991, Journal of cell science.

[49]  R. Kinne Oogenesis, spermatogenesis and reproduction , 1991 .

[50]  R. Ebberink,et al.  The Insulin Family: Evolution of Structure and Function in Vertebrates and Invertebrates , 1989 .

[51]  J. Vera,et al.  Functional expression of mammalian glucose transporters in Xenopus laevis oocytes: evidence for cell-dependent insulin sensitivity , 1989, Molecular and cellular biology.

[52]  G. Morrill,et al.  Chapter 7 – The Role of Calcium in Meiosis , 1986 .

[53]  L. Palmer The Epithelial Sodium Channel , 1986 .

[54]  R. Gupta,et al.  Studies of insulin action on the amphibian oocyte plasma membrane using NMR, electrophysiological and ion flux techniques. , 1985, Biochimica et biophysica acta.

[55]  M. Lazdunski,et al.  The Na+‐dependent regulation of the internal pH in chick skeletal muscle cells. The role of the Na+/H+ exchange system and its dependence on internal pH. , 1984, The EMBO journal.

[56]  R. Gupta,et al.  Role of calcium in regulating intracellular pH following the stepwise release of the metabolic blocks at first-meiotic prophase and second-meiotic metaphase in amphibian oocytes. , 1984, Biochimica et biophysica acta.

[57]  S. Weinstein,et al.  Endocytosis in the amphibian oocyte. Effect of insulin and progesterone on membrane and fluid internalization during the meiotic divisions. , 1984, Biochimica et biophysica acta.

[58]  E. Baulieu,et al.  Steroidal and peptidic control mechanisms in membrane of Xenopus laevis oocytes resuming meiotic division. , 1983, Journal of steroid biochemistry.

[59]  S. Weinstein,et al.  Increased Potassium Conductance in Rana Follicles after Stimulation by Pituitary Extract , 1983, Development, growth & differentiation.

[60]  K. Poralla Considerations on the evolution of steroids as membrane components , 1982 .

[61]  L. Meijer,et al.  The role of calcium in meiosis reinitiation. , 1982, Progress in clinical and biological research.

[62]  J. Maller,et al.  A study of the induction of cell division in amphibian oocytes by insulin. , 1981, Developmental biology.

[63]  A. Schuetz,et al.  Role of follicle wall in meiosis reinitiation induced by insulin in Rana pipiens oocytes. , 1981, The American journal of physiology.

[64]  R. Moore Stimulation of Na:H exchange by insulin. , 1981, Biophysical journal.

[65]  M. Czech,et al.  Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator. , 1980, The Journal of biological chemistry.

[66]  F. Schatz,et al.  The role of follicle cells inRana pipiens oocyte maturation induced by Δ5-pregnenolone , 1979 .

[67]  E. Baulieu,et al.  Meiotic maturation in Xenopus laevis oocytes initiated by insulin. , 1979, Science.

[68]  G. Morrill,et al.  Studies on the relative roles of pituitary and progesterone in the induction of meiotic maturation in the amphibian oocyte. , 1979, Differentiation; research in biological diversity.

[69]  F. Schatz,et al.  The role of follicle cells in Rana pipiens oocyte maturation induced by delta 5-pregnenolone. , 1979, Developmental biology.

[70]  G. Morrill,et al.  An analysis of transport, exchange, and binding of sodium and potassium in isolated amphibian follicles and denuded oocytes. , 1977, Journal of cell science.

[71]  J. Dumont Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals , 1972, Journal of morphology.

[72]  A. Gold SULFONYL FLUORIDES AS INHIBITORS OF ESTERASES. 3. IDENTIFICATION OF SERINE AS THE SITE OF SULFONYLATION IN PHENYLMETHANESULFONYL ALPHA-CHYMOTRYPSIN. , 1965, Biochemistry.

[73]  A. Gold,et al.  SULFONYL FLUORIDES AS INHIBITORS OF ESTERASES. II. FORMATION AND REACTIONS OF PHENYLMETHANESULFONYL ALPHA-CHYMOTRYPSIN. , 1964, Biochemistry.

[74]  B C HUMMEL,et al.  A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. , 1959, Canadian journal of biochemistry and physiology.

[75]  R. Rugh,et al.  The polar bodies of the frog, Rana pipiens. , 1948, The Journal of experimental zoology.