Meteoroid/Debris Shielding

This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

[1]  William C. Schneider,et al.  Flexible and deployable meteoroid/debris shielding for spacecraft , 1999 .

[2]  Eric L. Christiansen,et al.  International Space Station (ISS) Meteoroid/Orbital Debris Shielding , 1999 .

[3]  James L. Hyde,et al.  Meteoroid/orbital debris impact damage predictions for the Russian space station MIR , 1997 .

[4]  E. L. Christiansen,et al.  Debris cloud ablation in gas-filled pressure vessels , 1997 .

[5]  Ronald P. Bernhard,et al.  Orbital debris as detected on exposed spacecraft , 1997 .

[6]  Eric L. Christiansen,et al.  Penetration equations for thermal protection materials , 1997 .

[7]  E. Christiansen,et al.  Hypervelocity impact testing above 10 km/s of advanced orbital debris shields , 1996 .

[8]  Eric L. Christiansen,et al.  Enhanced meteoroid and orbital debris shielding , 1995 .

[9]  E. Igenbergs,et al.  Hypervelocity impacts of high pressure/high density plasma pulses on metallic surfaces , 1995 .

[10]  James D. Walker,et al.  Experimental impacts above 10 km/s , 1995 .

[11]  Clifford E. Rhoades,et al.  A computational study of projectile melt in impact with typical whipple shields , 1994 .

[12]  Faith Vilas,et al.  Space station freedom debris protection techniques , 1993 .

[13]  Eric L. Christiansen,et al.  Hypervelocity testing of advanced shielding concepts for spacecraft against impacts to 10 km/s , 1993 .

[14]  Eric L. Christiansen,et al.  Design and Performance Equations for Advanced Meteoroid and Debris Shields , 1993 .

[15]  Justin H. Kerr,et al.  Mesh double-bumper shield: A low-weight alternative for spacecraft meteoroid and orbital debris protection , 1993 .

[16]  Jennifer L. Rhatigan,et al.  On Protection of Freedom’s Solar Dynamic Radiator From the Orbital Debris Environment: Part II—Further Testing and Analysis , 1992 .

[17]  James L. Hyde,et al.  Spacecraft survivability in the meteoroid and debris environment , 1992 .

[18]  E. Christiansen Whipple shield sizing equations , 1991 .

[19]  Eric L. Christiansen,et al.  Investigation of hypervelocity impact damage to space station truss tubes , 1990 .

[20]  Burton G. Cour-Palais,et al.  A multi-shock concept for spacecraft shielding , 1990 .

[21]  P. Anz-meador,et al.  Orbital Debris Environment for Spacecraft Designed to Operate in Low Earth Orbit , 1989 .

[22]  Burton G. Cour-Palais,et al.  Hypervelocity impact in metals, glass and composites , 1987 .

[23]  H. F. Swift,et al.  Material Phase Transformation Effects upon Performance of Spaced Bumper Systems , 1972 .

[24]  C. R. Nysmith An experimental impact investigation of aluminum double-sheet structures. , 1969 .

[25]  B. G. Cour-Palais,et al.  Meteoroid protection by multiwall structures. , 1969 .

[26]  J. Wilkinson A penetration criterion for double-walled structures subject to meteoroid impact , 1968 .

[27]  Fred L. Whipple,et al.  Meteorites and space travel. , 1947 .