MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles

Abstract MNPBEM is a Matlab toolbox for the simulation of metallic nanoparticles (MNP), using a boundary element method (BEM) approach. The main purpose of the toolbox is to solve Maxwellʼs equations for a dielectric environment where bodies with homogeneous and isotropic dielectric functions are separated by abrupt interfaces. Although the approach is in principle suited for arbitrary body sizes and photon energies, it is tested (and probably works best) for metallic nanoparticles with sizes ranging from a few to a few hundreds of nanometers, and for frequencies in the optical and near-infrared regime. The toolbox has been implemented with Matlab classes. These classes can be easily combined, which has the advantage that one can adapt the simulation programs flexibly for various applications. Program summary Program title: MNPBEM Catalogue identifier: AEKJ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEKJ_v1_0.html Program obtainable from: CPC Program Library, Queenʼs University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 15 700 No. of bytes in distributed program, including test data, etc.: 891 417 Distribution format: tar.gz Programming language: Matlab 7.11.0 (R2010b) Computer: Any which supports Matlab 7.11.0 (R2010b) Operating system: Any which supports Matlab 7.11.0 (R2010b) RAM: ⩾1 GByte Classification: 18 Nature of problem: Solve Maxwellʼs equations for dielectric particles with homogeneous dielectric functions separated by abrupt interfaces. Solution method: Boundary element method using electromagnetic potentials. Running time: Depending on surface discretization between seconds and hours.

[1]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[2]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[3]  Girard,et al.  Generalized Field Propagator for Electromagnetic Scattering and Light Confinement. , 1995, Physical review letters.

[4]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[5]  L. Novotný,et al.  Antennas for light , 2011 .

[6]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[7]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[8]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[9]  Harald Ditlbacher,et al.  Electron-energy-loss spectra of plasmonic nanoparticles. , 2009, Physical review letters.

[10]  Ulrich Hohenester,et al.  Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach , 2005 .

[11]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[12]  Ulrich Hohenester,et al.  Förster-type resonant energy transfer influenced by metal nanoparticles. , 2008, Nano letters.

[13]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[14]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[16]  Ulrich Hohenester,et al.  Influence of surface roughness on the optical properties of plasmonic nanoparticles , 2011, 1209.5200.

[17]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[18]  U. Hohenester,et al.  Interaction of Single Molecules With Metallic Nanoparticles , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[20]  Ulrich Hohenester,et al.  Strong coupling between a metallic nanoparticle and a single molecule , 2008, 0802.1630.

[21]  U. Hohenester,et al.  The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing , 2010 .

[22]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[23]  Harry A Atwater,et al.  The promise of plasmonics , 2007, SIGD.

[24]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[25]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[26]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[27]  Isaak D. Mayergoyz,et al.  Electrostatic (plasmon) resonances in nanoparticles , 2005 .

[28]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[29]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[30]  R. Fuchs,et al.  Sum rule for the polarizability of small particles , 1976 .

[31]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[32]  R. Fuchs,et al.  Theory of the optical properties of ionic crystal cubes , 1975 .

[33]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[34]  D. Koller,et al.  Superresolution Moiré mapping of particle plasmon modes. , 2010, Physical review letters.

[35]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[36]  A. J. Ward,et al.  A program for calculating photonic band structures, Green's functions and transmission/reflection coefficients using a non-orthogonal FDTD method , 2000 .

[37]  Ulrich Hohenester,et al.  High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy , 2009 .

[38]  Ulrich Hohenester,et al.  Highly sensitive plasmonic silver nanorods. , 2011, ACS nano.

[39]  Ulrich Hohenester,et al.  Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures , 2007 .