Spatiotemporal clustering: a review
暂无分享,去创建一个
Shehroz S. Khan | Amir Ahmad | Mohd. Yousuf Ansari | Mainuddin | Mohd Yousuf Ansari | Gopal Bhushan | Amir Ahmad | Gopal Bhushan
[1] P. Fränti,et al. Sum-of-Squares Based Cluster Validity Index and Significance Analysis , 2009, ICANNGA.
[2] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[3] Daut Daman,et al. Choosing R-tree or Quadtree Spatial DataIndexing in One Oracle Spatial Database System to Make Faster Showing Geographical Map in Mobile Geographical Information System Technology , 2008 .
[4] Miriam Baglioni,et al. Towards Semantic Interpretation of Movement Behavior , 2009, AGILE Conf..
[5] Edmund Freeman,et al. Automating exploratory data analysis for efficient data mining , 2000, KDD '00.
[6] Vania Bogorny,et al. Spatial and Spatio-temporal Data Mining , 2008, 2010 IEEE International Conference on Data Mining.
[7] Dariusz Mrozek,et al. Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation - 13th International Conference, BDAS 2017, Ustroń, Poland, May 30 - June 2, 2017, Proceedings , 2017, BDAS.
[8] Antonin Guttman,et al. R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.
[9] Vania Bogorny,et al. Weka-STPM : from trajectory samples to semantic trajectories , 2010 .
[10] Gennady L. Andrienko,et al. Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.
[11] Vladimir Pavlovic,et al. Discovering clusters in motion time-series data , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[12] Lueder von Bremen,et al. CorClustST - Correlation-based clustering of big spatio-temporal datasets , 2020, Future Gener. Comput. Syst..
[13] Maryam Gholami Doborjeh,et al. Evolving, dynamic clustering of spatio/spectro-temporal data in 3D spiking neural network models and a case study on EEG data , 2018, Evol. Syst..
[14] Juyoung Kang,et al. Mining Trajectory Patterns by Incorporating Temporal Properties , 2009 .
[15] Min Wang,et al. Mining Spatial-temporal Clusters from Geo-databases , 2006, ADMA.
[16] Jiawei Han,et al. Geographic Data Mining and Knowledge Discovery , 2001 .
[17] SeegerBernhard,et al. The R*-tree: an efficient and robust access method for points and rectangles , 1990 .
[18] Witold Pedrycz,et al. Anomaly detection in time series data using a fuzzy c-means clustering , 2013, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS).
[19] Piotr S. Maciag,et al. A Survey on Data Mining Methods for Clustering Complex Spatiotemporal Data , 2017, BDAS.
[20] G. ErikaJohanaSalazar,et al. A Cluster Validity Index for Comparing Non-hierarchical Clustering Methods , 2002 .
[21] Hadi Fanaee-T. Spatio-temporal clustering methods classification , 2012 .
[22] Yan Huang,et al. Correlation Analysis of Spatial Time Series Datasets: A Filter-and-Refine Approach , 2003, PAKDD.
[23] Padhraic Smyth,et al. Translation-invariant mixture models for curve clustering , 2003, KDD '03.
[24] Regina O. Obe,et al. PostGIS in Action , 2011 .
[25] GunopulosDimitrios,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998 .
[26] Tian Zhang,et al. BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.
[27] Montasir M. Abbas,et al. Segmentation and Clustering of Car-Following Behavior: Recognition of Driving Patterns , 2015, IEEE Transactions on Intelligent Transportation Systems.
[28] Hongxun Yao,et al. Unsupervised discovery of crowd activities by saliency-based clustering , 2016, Neurocomputing.
[29] Spencer Chainey,et al. GIS in law enforcement: implementation issues and case studies , 2004 .
[30] Eliseo Clementini,et al. A Small Set of Formal Topological Relationships Suitable for End-User Interaction , 1993, SSD.
[31] Olatz Arbelaitz,et al. An extensive comparative study of cluster validity indices , 2013, Pattern Recognit..
[32] C. Pipper,et al. [''R"--project for statistical computing]. , 2008, Ugeskrift for laeger.
[33] Dino Pedreschi,et al. Trajectory pattern mining , 2007, KDD '07.
[34] Jon Louis Bentley,et al. Multidimensional binary search trees used for associative searching , 1975, CACM.
[35] Howard J. Hamilton,et al. Using clustering methods in geospatial information systems , 2009, Geoinformatics.
[36] Michalis Vazirgiannis,et al. On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.
[37] S. Dolnicar,et al. An examination of indexes for determining the number of clusters in binary data sets , 2002, Psychometrika.
[38] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[39] K. Pearson. VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.
[40] Maguelonne Teisseire,et al. A knowledge discovery process for spatiotemporal data: Application to river water quality monitoring , 2015, Ecol. Informatics.
[41] T. Caliński,et al. A dendrite method for cluster analysis , 1974 .
[42] Gaetano Borriello,et al. Extracting places from traces of locations , 2004, MOCO.
[43] Csaba Legány,et al. Cluster validity measurement techniques , 2006 .
[44] Vania Bogorny,et al. Discovering Chasing Behavior in Moving Object Trajectories , 2011, Trans. GIS.
[45] Chung-Hong Lee,et al. Mining spatio-temporal information on microblogging streams using a density-based online clustering method , 2012, Expert Syst. Appl..
[46] Shashi Shekhar,et al. Spatiotemporal Data Mining: A Computational Perspective , 2015, ISPRS Int. J. Geo Inf..
[47] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[48] Lior Rokach,et al. Data Mining And Knowledge Discovery Handbook , 2005 .
[49] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[50] Gennady L. Andrienko,et al. Interactive cluster analysis of diverse types of spatiotemporal data , 2010, SKDD.
[51] Hans-Peter Kriegel,et al. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.
[52] Ralf Hartmut Güting Dr.rer.nat. An introduction to spatial database systems , 2005, The VLDB Journal.
[53] Panos Kalnis,et al. On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.
[54] Sanjay Garg,et al. Development and validation of OPTICS based spatio-temporal clustering technique , 2016, Inf. Sci..
[55] Elke Achtert,et al. ELKI: A Software System for Evaluation of Subspace Clustering Algorithms , 2008, SSDBM.
[56] Maryam Gholami Doborjeh,et al. Dynamic 3D Clustering of Spatio-Temporal Brain Data in the NeuCube Spiking Neural Network Architecture on a Case Study of fMRI Data , 2015, ICONIP.
[57] Witold Pedrycz,et al. Spatiotemporal extended fuzzy C-means clustering algorithm for hotspots detection and prediction , 2017, Fuzzy Sets Syst..
[58] H WittenIan,et al. The WEKA data mining software , 2009 .
[59] Peter Widmayer,et al. The LSD tree: spatial access to multidimensional and non-point objects , 1989, VLDB 1989.
[60] Xing Xie,et al. Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.
[61] Vania Bogorny,et al. A clustering-based approach for discovering interesting places in trajectories , 2008, SAC '08.
[62] Derya Birant,et al. ST-DBSCAN: An algorithm for clustering spatial-temporal data , 2007, Data Knowl. Eng..
[63] Marimuthu Palaniswami,et al. Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..
[64] G. W. Milligan,et al. A monte carlo study of thirty internal criterion measures for cluster analysis , 1981 .
[65] Hanan Samet,et al. Using Quadtrees to Represent Spatial Data , 1985 .
[66] Ee-Peng Lim,et al. Mining Mobile Group Patterns: A Trajectory-Based Approach , 2005, PAKDD.
[67] Mohammed Otair,et al. Approximate k-nearest neighbour based spatial clustering using k-d tree , 2013, ArXiv.
[68] Hui Xiong,et al. Understanding of Internal Clustering Validation Measures , 2010, 2010 IEEE International Conference on Data Mining.
[69] Daut Daman,et al. Choosing R-tree or Quadtree Spatial Data Indexing in One Oracle Spatial Database , 2009 .
[70] Jae-Gil Lee,et al. Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.
[71] James H. Faghmous,et al. A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science , 2014, Big Data.
[72] Petko Bakalov,et al. On-line discovery of flock patterns in spatio-temporal data , 2009, GIS.
[73] Stefan Wrobel,et al. Visual analytics tools for analysis of movement data , 2007, SKDD.
[74] R. M. Cormack,et al. Spatial Data Analysis by Example. Volume 1: Point Pattern and Quantitative Data , 1985 .
[75] Dr. G. Narsimha,et al. A REVIEW ON SPATIAL DATA MINING METHODS AND APPLICATIONS , 2014 .
[76] Markus Reischl,et al. Data mining tools , 2011, WIREs Data Mining Knowl. Discov..
[77] K. Kirby,et al. Subtalar joint axis location and rotational equilibrium theory of foot function. , 2001, Journal of the American Podiatric Medical Association.
[78] Alexander Zipf,et al. An exploration of the interaction between urban human activities and daily traffic conditions: A case study of Toronto, Canada , 2019, Cities.
[79] Pavel Berkhin,et al. A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.
[80] Michela Bertolotto,et al. Exploratory spatio-temporal data mining and visualization , 2007, J. Vis. Lang. Comput..
[81] Dino Pedreschi,et al. Mobility, Data Mining and Privacy - Geographic Knowledge Discovery , 2008, Mobility, Data Mining and Privacy.
[82] Valéria Cesário Times,et al. DB-SMoT: A direction-based spatio-temporal clustering method , 2010, 2010 5th IEEE International Conference Intelligent Systems.
[83] Christian S. Jensen,et al. Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..
[84] Nikos Mamoulis,et al. Mining frequent spatio-temporal sequential patterns , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[85] M Kulldorff,et al. Spatial disease clusters: detection and inference. , 1995, Statistics in medicine.
[86] Witold Pedrycz,et al. Clustering Spatiotemporal Data: An Augmented Fuzzy C-Means , 2013, IEEE Transactions on Fuzzy Systems.
[87] Vipin Kumar,et al. Clustering Dynamic Spatio-Temporal Patterns in The Presence of Noise and Missing Data , 2015, IJCAI.
[88] Sabine Timpf,et al. Trajectory data mining: A review of methods and applications , 2016, J. Spatial Inf. Sci..
[89] Dino Pedreschi,et al. Visually driven analysis of movement data by progressive clustering , 2008, Inf. Vis..
[90] Hans-Werner Six,et al. The LSD tree: Spatial Access to Multidimensional Point and Nonpoint Objects , 1989, VLDB.
[91] Mengchu Cai,et al. Parametric R-Tree: An Index Structure for Moving Objects , 2000 .
[92] Lailan Syaufina,et al. Hotspot Pattern Distribution in Peat Land Area in Sumatera Based on Spatio Temporal Clustering , 2016 .
[93] Geoffrey H. Ball,et al. ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION , 1965 .
[94] J. Dunn. Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .
[95] Daniel T. Larose,et al. Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .
[96] Hans-Peter Kriegel,et al. OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.
[97] Qing Dong,et al. Dual-Constraint Spatiotemporal Clustering Approach for Exploring Marine Anomaly Patterns Using Remote Sensing Products , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[98] Ickjai Lee,et al. Hierarchical trajectory clustering for spatio-temporal periodic pattern mining , 2018, Expert Syst. Appl..
[99] Lipika Dey,et al. A k-mean clustering algorithm for mixed numeric and categorical data , 2007, Data Knowl. Eng..
[100] Amani Saad,et al. A Density-Based Clustering of Spatio-Temporal Data , 2015, WorldCIST.
[101] Yifan Li,et al. Clustering moving objects , 2004, KDD.
[102] Padhraic Smyth,et al. Trajectory clustering with mixtures of regression models , 1999, KDD '99.
[103] Fabio Porto,et al. A conceptual view on trajectories , 2008, Data Knowl. Eng..
[104] Vania Bogorny,et al. An algorithm to identify avoidance behavior in moving object trajectories , 2011, Journal of the Brazilian Computer Society.
[105] Christos Faloutsos,et al. The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.
[106] Shashi Shekhar,et al. Spatial and Spatiotemporal Data Mining: Recent Advances , 2008 .
[107] Dino Pedreschi,et al. Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.
[108] Nikos Pelekis,et al. Similarity Search in Trajectory Databases , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).
[109] Eréndira Rendón,et al. Internal versus External cluster validation indexes , 2011 .
[110] Ricardo J. G. B. Campello,et al. Density-Based Clustering Based on Hierarchical Density Estimates , 2013, PAKDD.
[111] MikutRalf,et al. Data mining tools , 2011 .
[112] Andrew W. Moore,et al. Detection of spatial and spatio-temporal clusters , 2006 .
[113] Hans-Peter Kriegel,et al. The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.
[114] Xuefeng Ya. Research issues in spatio-temporal data mining , 2003 .
[115] Panfeng Zhou,et al. The hB-pi* Tree: An Optimized Comprehensive Access Method for Frequent-Update Multi-dimensional Point Data , 2008, SSDBM.
[116] Pemetaan Jumlah Balita,et al. Spatial Scan Statistic , 2014, Encyclopedia of Social Network Analysis and Mining.
[117] T Djatna,et al. Spatial temporal clustering for hotspot using kulldorff scan statistic method (KSS): A case in Riau Province , 2017 .
[118] B Anbaroglu,et al. Non-recurrent traffic congestion detection on heterogeneous urban road networks , 2015 .
[119] George J. Vachtsevanos,et al. "Seismic-mass" density-based algorithm for spatio-temporal clustering , 2013, Expert Syst. Appl..
[120] Bo Hu,et al. Spatio-Temporal Topic Modeling in Mobile Social Media for Location Recommendation , 2013, 2013 IEEE 13th International Conference on Data Mining.
[121] Witold Pedrycz,et al. Fuzzy clustering of time series data using dynamic time warping distance , 2015, Eng. Appl. Artif. Intell..
[122] Alessandro Fiori,et al. DeCoClu: Density consensus clustering approach for public transport data , 2016, Inf. Sci..
[123] Miriam Baglioni,et al. Querying and Reasoning for Spatiotemporal Data Mining , 2008, Mobility, Data Mining and Privacy.