Real-Time Molecular Visualization Supporting Diffuse Interreflections and Ambient Occlusion

Today molecular simulations produce complex data sets capturing the interactions of molecules in detail. Due to the complexity of this time-varying data, advanced visualization techniques are required to support its visual analysis. Current molecular visualization techniques utilize ambient occlusion as a global illumination approximation to improve spatial comprehension. Besides these shadow-like effects, interreflections are also known to improve the spatial comprehension of complex geometric structures. Unfortunately, the inherent computational complexity of interreflections would forbid interactive exploration, which is mandatory in many scenarios dealing with static and time-varying data. In this paper, we introduce a novel analytic approach for capturing interreflections of molecular structures in real-time. By exploiting the knowledge of the underlying space filling representations, we are able to reduce the required parameters and can thus apply symbolic regression to obtain an analytic expression for interreflections. We show how to obtain the data required for the symbolic regression analysis, and how to exploit our analytic solution to enhance interactive molecular visualizations.

[1]  Daniel Baum,et al.  Interactive Rendering of Materials and Biological Structures on Atomic and Nanoscopic Scale , 2012, Comput. Graph. Forum.

[2]  Stephen Lin,et al.  Global illumination with radiance regression functions , 2013, ACM Trans. Graph..

[3]  Thomas Ertl,et al.  Interactive Visualization of Molecular Surface Dynamics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[4]  Michael Gleicher,et al.  Visualizing Validation of Protein Surface Classifiers , 2014, Comput. Graph. Forum.

[5]  Ivan Viola,et al.  Visualization of Biomolecular Structures: State of the Art , 2015, EuroVis.

[6]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[7]  Daniel Baum,et al.  Ligand Excluded Surface: A New Type of Molecular Surface , 2014, IEEE Transactions on Visualization and Computer Graphics.

[8]  Michael Gleicher,et al.  Molecular Surface Abstraction , 2007, IEEE Transactions on Visualization and Computer Graphics.

[9]  Kelly P. Gaither,et al.  Ray tracing and volume rendering large molecular data on multi-core and many-core architectures , 2013, UltraVis@SC.

[10]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[11]  Paolo Cignoni,et al.  Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[12]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[13]  Michael E. Papka,et al.  Visualizing Large, Heterogeneous Data in Hybrid-Reality Environments , 2013, IEEE Computer Graphics and Applications.

[14]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[15]  Ivan Viola,et al.  Two-Level Approach to Efficient Visualization of Protein Dynamics , 2007, IEEE Transactions on Visualization and Computer Graphics.

[16]  Michael Gleicher,et al.  Multi-Scale Surface Descriptors , 2009, IEEE Transactions on Visualization and Computer Graphics.

[17]  Linus Pauling,et al.  Molecular Models of Amino Acids, Peptides, and Proteins , 1953 .

[18]  A. Hurlbert,et al.  Perception of three-dimensional shape influences colour perception through mutual illumination , 1999, Nature.

[19]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions , 1963 .

[20]  Min H. Kim,et al.  Perceptual influence of approximate visibility in indirect illumination , 2009, TAP.

[21]  Michael Gleicher,et al.  Ieee Transactions on Visualization and Computer Graphics Automated Illustration of Molecular Flexibility , 2022 .

[22]  David J. Kriegman,et al.  Reflections on the generalized bas-relief ambiguity , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  Thomas Ertl,et al.  Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides , 2012, IEEE Transactions on Visualization and Computer Graphics.

[24]  Heather A. Carlson,et al.  Exploring the Composition of Protein-Ligand Binding Sites on a Large Scale , 2013, PLoS Comput. Biol..

[25]  Daniel Baum,et al.  Dynamic channels in biomolecular systems: Path analysis and visualization , 2012, 2012 IEEE Symposium on Biological Data Visualization (BioVis).

[26]  Thomas Ertl,et al.  Comparative Visualization of Molecular Surfaces Using Deformable Models , 2014, Comput. Graph. Forum.

[27]  Martin Falk,et al.  Atomistic Visualization of Mesoscopic Whole‐Cell Simulations Using Ray‐Casted Instancing , 2013, Comput. Graph. Forum.

[28]  Timo Ropinski,et al.  Coverage-based opacity estimation for interactive Depth of Field in molecular visualization , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[29]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[30]  Armin B. Cremers,et al.  Efficient radius neighbor search in three-dimensional point clouds , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[31]  Tobias Isenberg,et al.  Illustrative Molecular Visualization with Continuous Abstraction , 2011, Comput. Graph. Forum.

[32]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[33]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[34]  Joseph R Weber,et al.  ProteinShader: illustrative rendering of macromolecules , 2009, BMC Structural Biology.

[35]  Ivan Viola,et al.  Illustrative Visualization of Molecular Reactions using Omniscient Intelligence and Passive Agents , 2014, Comput. Graph. Forum.

[36]  Thomas Ertl,et al.  Hardware-Accelerated Glyphs for Mono- and Dipoles in Molecular Dynamics Visualization , 2005, EuroVis.

[37]  Thomas Ertl,et al.  Object-space ambient occlusion for molecular dynamics , 2012, 2012 IEEE Pacific Visualization Symposium.

[38]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[39]  Timo Ropinski,et al.  Continuous Levels‐of‐Detail and Visual Abstraction for Seamless Molecular Visualization , 2014, Comput. Graph. Forum.

[40]  Thomas Ertl,et al.  MegaMol—A Prototyping Framework for Particle-Based Visualization , 2015, IEEE Transactions on Visualization and Computer Graphics.

[41]  Michael Todd Bunnell,et al.  Dynamic Ambient Occlusion and Indirect Lighting , 2005 .

[42]  Oliver Deussen,et al.  Image enhancement by unsharp masking the depth buffer , 2006, SIGGRAPH 2006.

[43]  Kai Lawonn,et al.  Line Integral Convolution for Real‐Time Illustration of Molecular Surface Shape and Salient Regions , 2014, Comput. Graph. Forum.

[44]  Thomas Ertl,et al.  GPU-powered tools boost molecular visualization , 2011, Briefings Bioinform..

[45]  Thomas D. Goddard,et al.  Visualization software for molecular assemblies. , 2007, Current opinion in structural biology.

[46]  Martin Falk,et al.  Visualization of signal transduction processes in the crowded environment of the cell , 2009, 2009 IEEE Pacific Visualization Symposium.

[47]  Thomas Ertl,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Coherent Culling and Shading for Large Molecular Dynamics Visualization , 2022 .