Robust content-based image indexing using contextual clues and automatic pseudofeedback

Abstract.In this paper we present a robust information integration approach to identifying images of persons in large collections such as the Web. The underlying system relies on combining content analysis, which involves face detection and recognition, with context analysis, which involves extraction of text or HTML features. Two aspects are explored to test the robustness of this approach: sensitivity of the retrieval performance to the context analysis parameters and automatic construction of a facial image database via automatic pseudofeedback. For the sensitivity testing, we reevaluate system performance while varying context analysis parameters. This is compared with a learning approach where association rules among textual feature values and image relevance are learned via the CN2 algorithm. A face database is constructed by clustering after an initial retrieval relying on face detection and context analysis alone. Experimental results indicate that the approach is robust for identifying and indexing person images.

[1]  Joemon M. Jose,et al.  Spatial querying for image retrieval: a user-oriented evaluation , 1998, SIGIR '98.

[2]  William I. Grosky,et al.  Negotiating the semantic gap: from feature maps to semantic landscapes , 2001, Pattern Recognit..

[3]  Shih-Fu Chang,et al.  Visually Searching the Web for Content , 1997, IEEE Multim..

[4]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[5]  Svetha Venkatesh,et al.  Bridging the Semantic Gap in Content Management Systems , 2002 .

[6]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Marco La Cascia,et al.  Image Digestion and Relevance Feedback in the ImageRover WWW Search Engine , 1997 .

[8]  S. Sclaroff,et al.  Combining textual and visual cues for content-based image retrieval on the World Wide Web , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[9]  Alex Pentland,et al.  Face recognition using view-based and modular eigenspaces , 1994, Optics & Photonics.

[10]  Philip R. Thrift,et al.  Hybrid neural network classifiers for automatic target detection , 1993 .

[11]  Ingemar J. Cox,et al.  PicHunter: Bayesian relevance feedback for image retrieval , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[12]  Thomas S. Huang,et al.  Relevance feedback techniques in interactive content-based image retrieval , 1997, Electronic Imaging.

[13]  Eric Brill,et al.  Some Advances in Transformation-Based Part of Speech Tagging , 1994, AAAI.

[14]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[15]  Christos Faloutsos,et al.  Efficient and effective Querying by Image Content , 1994, Journal of Intelligent Information Systems.

[16]  Simone Santini The Integration of Textual and Visual Search in Image Databases , 2000 .

[17]  Chahab Nastar,et al.  Relevance feedback and category search in image databases , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[18]  Terrence J. Sejnowski,et al.  SEXNET: A Neural Network Identifies Sex From Human Faces , 1990, NIPS.

[19]  Sonya A. H. McMullen,et al.  Mathematical Techniques in Multisensor Data Fusion (Artech House Information Warfare Library) , 2004 .

[20]  Clement T. Yu,et al.  Multiple evidence combination in image retrieval: Diogenes searches for people on the Web , 2000, SIGIR '00.

[21]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[22]  Mohamad H. Hassoun,et al.  Training algorithms for robust face recognition using a template-matching approach , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[23]  Sougata Mukherjea,et al.  AMORE: a world-wide web image retrieval engine , 1999, CHI Extended Abstracts.

[24]  Clement T. Yu,et al.  Experiments in Using Virtual and Textual Clues for Image Hunting on the Web , 2000, VISUAL.

[25]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[26]  Ramesh C. Jain,et al.  Metadata in video databases , 1994, SGMD.

[27]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Philippe Smets,et al.  The Transferable Belief Model for Quantified Belief Representation , 1998 .

[29]  Simone Santini,et al.  Emergent Semantics through Interaction in Image Databases , 2001, IEEE Trans. Knowl. Data Eng..

[30]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[31]  Neill W. Campbell,et al.  Iterative refinement by relevance feedback in content-based digital image retrieval , 1998, MULTIMEDIA '98.

[32]  Philippe Smets,et al.  The Transferable Belief Model , 1994, Artif. Intell..

[33]  Alan F. Smeaton,et al.  Experiments on using semantic distances between words in image caption retrieval , 1996, SIGIR '96.