Lévy noise induced transitions and enhanced stability in a birhythmic van der Pol system

[1]  Simulation and Chaotic Behavior of α-Stable Stochastic Processes , 2021 .

[2]  V. Pierro,et al.  Josephson-based Threshold Detector for Lévy-Distributed Current Fluctuations , 2018, Physical Review Applied.

[3]  Luigi Troiano,et al.  Stochastic first passage time accelerated with CUDA , 2018, J. Comput. Phys..

[4]  C. Lacor,et al.  Chaos , 1876, Molecular Vibrations.

[5]  P. Woafo,et al.  Coherence and stochastic resonance in a birhythmic van der Pol system , 2017 .

[6]  V. Pierro,et al.  Anomalous transport effects on switching currents of graphene-based Josephson junctions , 2017, Nanotechnology.

[7]  C. Tchawoua,et al.  Effects of a periodic drive and correlated noise on birhythmic van der Pol systems , 2017 .

[8]  Y Sun,et al.  An Improved Adaptive Minimum Action Method for the Calculation of Transition Path in Non-gradient Systems , 2017 .

[9]  C. Tchawoua,et al.  Stochastic bifurcations induced by correlated noise in a birhythmic van der Pol system , 2015, Commun. Nonlinear Sci. Numer. Simul..

[10]  Mohamed El Aroussi,et al.  Bearing fault diagnosis and classification based on KDA and alpha-stable fusion , 2016 .

[11]  C. Tchawoua,et al.  Pseudopotential of birhythmic van der Pol-type systems with correlated noise , 2015, 1512.00619.

[12]  Bernardo Spagnolo,et al.  Noise-induced effects in nonlinear relaxation of condensed matter systems , 2015 .

[13]  A. Carollo,et al.  Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions , 2015, 1511.04899.

[14]  I. Pavlyukevich,et al.  Metastability in a class of hyperbolic dynamical systems perturbed by heavy-tailed Lévy type noise , 2015 .

[15]  M. Bier,et al.  Stepping molecular motor amid Lévy white noise. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  A. Porporato,et al.  Nonlinear dynamics of the CAM circadian rhythm in response to environmental forcing. , 2015, Journal of theoretical biology.

[17]  A. Gossard,et al.  Fractal Lévy Heat Transport in Nanoparticle Embedded Semiconductor Alloys. , 2015, Nano letters.

[18]  Ali Shakouri,et al.  Superdiffusive heat conduction in semiconductor alloys. II. Truncated Lévy formalism for experimental analysis , 2014, 1406.7342.

[19]  Yong Xu,et al.  The Phase Transition in a Bistable Duffing System Driven by Lévy Noise , 2015 .

[20]  G. Filatrella,et al.  Noise effects on a birhythmic Josephson junction coupled to a resonator. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  I. Pavlyukevich,et al.  The Exit Problem from a Neighborhood of the Global Attractor for Dynamical Systems Perturbed by Heavy-Tailed Lévy Processes , 2014 .

[22]  A. Mirlin,et al.  Relaxation of optically excited carriers in graphene: Anomalous diffusion and Levy flights , 2013, 1310.8254.

[23]  S. Luryi,et al.  Temperature controlled Lévy flights of minority carriers in photoexcited bulk n-InP , 2013, 1302.4399.

[24]  Hilda A Cerdeira,et al.  Effective Fokker-Planck equation for birhythmic modified van der Pol oscillator. , 2012, Chaos.

[25]  Direct observation of Levy flight of holes in bulk n-InP , 2012, 1205.4975.

[26]  D. Valenti,et al.  Non-Gaussian noise effects in the dynamics of a short overdamped Josephson junction , 2010 .

[27]  D. Valenti,et al.  Dynamics of two competing species in the presence of Lévy noise sources. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Kurt Jacobs,et al.  Stochastic Processes for Physicists: Understanding Noisy Systems , 2010 .

[29]  Kurt Jacobs,et al.  Stochastic Processes for Physicists: Stochastic Processes for Physicists , 2010 .

[30]  G. Filatrella,et al.  Global stability analysis of birhythmicity in a self-sustained oscillator. , 2010, Chaos.

[31]  David Applebaum,et al.  Lévy Processes and Stochastic Calculus by David Applebaum , 2009 .

[32]  B. Spagnolo,et al.  Verhulst model with Lévy white noise excitation , 2008, 0810.1370.

[33]  Bernardo Spagnolo,et al.  Lévy Flight Superdiffusion: an Introduction , 2008, Int. J. Bifurc. Chaos.

[34]  J. B. Chabi Orou,et al.  Synchronization of two coupled self-excited systems with multi-limit cycles. , 2007, Chaos.

[35]  J. B. Chabi Orou,et al.  Nonlinear dynamics and strange attractors in the biological system , 2007 .

[36]  René Yamapi,et al.  Dynamics and Active Control of Motion of a Driven Multi-Limit-Cycle van der Pol oscillator , 2007, Int. J. Bifurc. Chaos.

[37]  J. Klafter,et al.  Barrier crossing driven by Lévy noise: universality and the role of noise intensity. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Vimal Bhatia,et al.  Stochastic gradient algorithms for equalisation in alpha-stable noise , 2006, Signal Process..

[39]  Aleksei V. Chechkin,et al.  Barrier crossing of a Lévy flight , 2005 .

[40]  Elizabeth B. Klerman,et al.  Comparison of Amplitude Recovery Dynamics of Two Limit Cycle Oscillator Models of the Human Circadian Pacemaker , 2005, Chronobiology international.

[41]  M. Kastner,et al.  Lévy statistics and anomalous transport in quantum-dot arrays , 2003, cond-mat/0307031.

[42]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[43]  Escape from a metastable state with fluctuating barrier , 2003 .

[44]  M Dahan,et al.  Statistical aging and nonergodicity in the fluorescence of single nanocrystals. , 2002, Physical review letters.

[45]  Athina P. Petropulu,et al.  Ieee Transactions on Signal Processing Co-channel Interference Modeling and Analysis in a Poisson Field of Interferers in Wireless Communications , 2022 .

[46]  Kharkov,et al.  Fractional kinetics for relaxation and superdiffusion in a magnetic field , 2001, physics/0107018.

[47]  M Dahan,et al.  Bunching and antibunching in the fluorescence of semiconductor nanocrystals. , 2001, Optics letters.

[48]  David J. Nesbitt,et al.  ``On''/``off'' fluorescence intermittency of single semiconductor quantum dots , 2001 .

[49]  R. Weron Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime , 2001, cond-mat/0103256.

[50]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[51]  Daniel B. Forger,et al.  Revised Limit Cycle Oscillator Model of Human Circadian Pacemaker , 1999, Journal of biological rhythms.

[52]  Numerical and Statistical Approximation of Stochastic Differential Equations with Non-Gaussian Measures , 1996 .

[53]  Richard L. Kautz,et al.  Quasipotential and the stability of phase lock in nonhysteretic Josephson junctions , 1994 .

[54]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[55]  F. Kaiser,et al.  BIFURCATION STRUCTURE OF A DRIVEN MULTI-LIMIT-CYCLE VAN DER POL OSCILLATOR (II): SYMMETRY-BREAKING CRISIS AND INTERMITTENCY , 1991 .

[56]  F. Kaiser,et al.  BIFURCATION STRUCTURE OF A DRIVEN, MULTI-LIMIT-CYCLE VAN DER POL OSCILLATOR (I): THE SUPERHARMONIC RESONANCE STRUCTURE , 1991 .

[57]  A. Goldbeter,et al.  Oscillatory isozymes as the simplest model for coupled biochemical oscillators. , 1989, Journal of theoretical biology.

[58]  Kautz Thermally induced escape: The principle of minimum available noise energy. , 1988, Physical review. A, General physics.

[59]  F. Kaiser The Role of Chaos in Biological Systems , 1987 .

[60]  Graham,et al.  Weak-noise limit of Fokker-Planck models and nondifferentiable potentials for dissipative dynamical systems. , 1985, Physical review. A, General physics.

[61]  Onset of birhythmicity in a regulated biochemical system. , 1984, Biophysical chemistry.

[62]  F. Kaiser Theory of Resonant Effects of RF and MW Energy , 1983 .

[63]  F. Kaiser Specific Effects in Externally Driven Self-sustained Oscillating Biophysical Model Systems , 1983 .

[64]  F. Kaiser Coherent oscillations in biological systems: Interaction with extremely low frequency fields , 1982 .