Substituted metal carbonyls. Part 25: Unidentate, intramolecular, and intermolecular bridging modes of 1,1′-bis(diphenylphosphino)ferrocene inM3S2(CO)9 (M = Fe, Ru) cluster derivatives

[1]  W. Cullen,et al.  Thermolysis of osmium-iron complex Os3(CO)10[Fe(.eta.-C5H4PPr-iso2)2]. Crystal and molecular structures of (.mu.-H)Os3(CO)8[.mu.-(.eta.-C5H4PPr-iso2)Fe(.eta.-C5H4PPr-isoCHMeCH2CO)], (.mu.-H)Os3(CO)9[.mu.-(.eta.-C5H4PPr-iso2)Fe(.eta.-C5H3PPr-iso)], and (.mu.-H)2Os3(CO)8[.eta.3-.mu.-(.eta.-C5H4PPr-iso , 1993 .

[2]  T. Fehlner,et al.  Clusters as ligands. Comparison of the reactivity of (CO)9Co3(.mu.3-CR) (R = COOH, p-C6H4(CH2)2COOH) leading to the formation of Zn[p-C6H4(CH2)2CO2]2 vs MII4O[(CO)9Co3CCO2]6 (M = Zn, Co) , 1993 .

[3]  C. Housecroft,et al.  Synthesis and solution properties of the boron-containing clusters HM4(CO)12BAu2(dppf) (M Fe or Ru) and the competitive formation of HM4(CO)12BHAu2(dppf) for M Ru (dppf = 1,1′-bis(diphenylphosphino)ferrocene). Molecular structure of HRu4(CO)12BAu2(dppf) ·2 CHCl3 , 1992 .

[4]  W. Cullen,et al.  Ferrocyne and ferrodicyne. Preparation and structures of Os3(CO)s[.mu.3-(C5H3)Fe(C5H5)][.mu.3-P(C5H4)Fe(C5H5)], Os3(H)2(CO)8(PPr-iso2C5H2)Fe(C5H2PPr-iso2)Os3(H)2(CO)8, and Os3(CO)9[.mu.3-C6H4][.mu.3-P(C5H4)Fe(C5H5)] , 1992 .

[5]  H. Chan,et al.  Substituted metal carbonylsXVIII. rhenium 1,1′-bis(diphenylphosphino)ferrocene (DPPF) complexes derived from [Re2(CO)9]. Crystal structures of two isomorphous pentametallic [M2(CO)9]2(μ-dppf) (M Mn, Re) and trimetallic Re2(CO)9(dppfO) complexes , 1991 .

[6]  T. Hor,et al.  Substituted metal carbonyls. XII: Synthesis of Fe(CO)4(η1-dppf) (dppf=(Ph2PC5H4)2Fe) and its conversion into Fe2(CO)8(μ-dppf) and (CO)4Fe(μ-dppf)Mo(CO)5 , 1990 .

[7]  T. Hor,et al.  Substituted metal carbonyls XI. 1,1′-Bis(diphenylphosphino)ferrocene — a bridging, chelating and unidentate ligand in the synthesis of M2(CO)10(μ-PP), M(CO)4(η2-PP) and M(CO)5(η1-PP) (where M = Cr, Mo, W and PP = Fe(C5H4PPh2)2)☆ , 1989 .

[8]  N. Taylor,et al.  A one step synthesis of phosphine substituted sulphur capped clusters from phosphine sulphides: X-ray crystal structures of [Fe3(CO)8(µ2-CO)(µ3-S)(Ph2PC2Pri)] and [Ru3(CO)8(µ3-S)2(Ph2PC2But)] , 1988 .

[9]  R. D. Adams,et al.  Ligand substitution vs ligand addition. 2. Reaction of dimethylamine with nonacarbonylbis(.mu.3-sulfido)triruthenium and the crystal and molecular structures of Ru3(CO)7(NHMe2)(.mu.-Me2NC:O)(.mu.3-S)2(.mu.-H) and Ru3(CO)6(NHMe2)(.mu.-Me2NC:O)2(.mu.3-S)2 , 1986 .

[10]  R. D. Adams,et al.  Ligand substitution vs. ligand addition. 1. Differences in reactivity between first- and third-row transition-metal clusters. Reactions of dimethylamine with the sulfidometal carbonyl clusters M3(CO)9(.mu.3-S)2 (M = Fe, Os) , 1986 .

[11]  B. Skelton,et al.  Cluster Chemistry ☆: XXXXII. Some Ruthenium carbonyl complexes of cis-1,2-bis(diphenylphosphino)ethene. X-ray structure of Ru2{μ-C2H2(PPh2)2}(CO)6 , 1986 .

[12]  T. Hor,et al.  Cluster synthesis. 7. Role of bridging sulfido ligands in the synthesis of platinum osmium carbonyl cluster compounds , 1984 .

[13]  R. D. Adams,et al.  Clusters in catalysis. High reactivity in an electron-rich cluster with weak metal-metal bonds. Facile, reversible addition of carbon monoxide to Os4(CO)12(μ3-S)2 , 1983 .

[14]  Jack Lewis,et al.  The preparation, characterisation, and some reactions of [Os3(CO)11-(NCMe)] , 1981 .

[15]  J. C. Smart,et al.  Symmetrically disubstituted ferrocenes : I. The synthesis of potential bidentate ligands , 1971 .

[16]  R. Rossetti,et al.  Chalcogen derivatives of iron carbonyls I. Substituted derivatives of Fe3(CO)9X2 Complexes (X=S, Se, Te) with ligands , 1968 .

[17]  L. F. Dahl,et al.  Crystal Structure of a 1:1 Mixture of Two Iron Carbonyl Sulfur Complexes, S2Fe3(CO)9 and S2Fe2(CO)6 , 1965 .

[18]  F. Mayo,et al.  Coördination Compounds of Palladous Chloride1 , 1938 .