Exploiting Degeneracy in Belief Propagation Decoding of Quantum Codes

Quantum information needs to be protected by quantum error-correcting codes due to imperfect quantum devices and operations. One would like to have an efficient and high-performance decoding procedure for quantum codes. A potential candidate is Pearl’s belief propagation (BP), but its performance suffers from the many short cycles inherent in quantum codes, especially highly-degenerate codes (that is, codes with many low-weight stabilizers). A general impression exists that BP cannot work for topological codes, such as the surface and toric codes. In this paper, we propose a decoding algorithm for quantum codes based on quaternary BP but with additional memory effects (called MBP). This MBP is like a recursive neural network with inhibition between neurons (edges with negative weights) during recursion, which enhances the network’s perception capability. Moreover, MBP exploits the degeneracy of quantum codes so that it has a better chance to find the most probable error or its degenerate errors. The decoding performance is significantly improved over the conventional BP for various quantum codes, including quantum bicycle codes, hypergraph-product codes, and surface (or toric) codes. For MBP on the surface and toric codes over depolarizing errors, we observe thresholds of 14.5%–16% and 14.5%–17.5%, respectively.

[1]  Baoming Bai,et al.  Enhanced Feedback Iterative Decoding of Sparse Quantum Codes , 2009, IEEE Transactions on Information Theory.

[2]  Austin G. Fowler,et al.  Graphical algorithms and threshold error rates for the 2d color code , 2009, Quantum Inf. Comput..

[3]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[4]  Jinghu Chen,et al.  Near optimum universal belief propagation based decoding of low-density parity check codes , 2002, IEEE Trans. Commun..

[5]  Adam C. Whiteside,et al.  Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.

[6]  Charles M. Marcus,et al.  Nonlinear dynamics and stability of analog neural networks , 1991 .

[7]  Omar Fawzi,et al.  Efficient decoding of random errors for quantum expander codes , 2017, STOC.

[8]  Liang Jiang,et al.  Deep Neural Network Probabilistic Decoder for Stabilizer Codes , 2017, Scientific Reports.

[9]  Rüdiger L. Urbanke,et al.  Density Evolution, Thresholds and the Stability Condition for Non-binary LDPC Codes , 2005, ArXiv.

[10]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[11]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[12]  Hideki Imai,et al.  Fixed Initialization Decoding of LDPC Codes Over a Binary Symmetric Channel , 2012, IEEE Transactions on Information Theory.

[13]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[14]  D. E. Van den Bout,et al.  Improving the performance of the Hopfield-Tank neural network through normalization and annealing , 1989, Biological Cybernetics.

[15]  Earl T. Campbell,et al.  Decoding across the quantum low-density parity-check code landscape , 2020, Physical Review Research.

[16]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[17]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[18]  Jinghu Chen,et al.  Density evolution for two improved BP-Based decoding algorithms of LDPC codes , 2002, IEEE Communications Letters.

[19]  Imran Ashraf,et al.  Multi-path Summation for Decoding 2D Topological Codes , 2017, Quantum.

[20]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[21]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[22]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[23]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..

[24]  Nicolas Delfosse,et al.  Almost-linear time decoding algorithm for topological codes , 2017, Quantum.

[25]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[26]  Helmut G. Katzgraber,et al.  Strong resilience of topological codes to depolarization , 2012, 1202.1852.

[27]  Martin Bossert,et al.  On Iterative Soft-Decision Decoding of Linear Binary Block Codes and Product Codes , 1998, IEEE J. Sel. Areas Commun..

[28]  Hideki Imai,et al.  Reduced complexity iterative decoding of low-density parity check codes based on belief propagation , 1999, IEEE Trans. Commun..

[29]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.

[30]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[31]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[32]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[33]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[34]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[35]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[36]  Alexei Ashikhmin,et al.  Quantum Data-Syndrome Codes , 2019, IEEE Journal on Selected Areas in Communications.

[37]  Anirudh Krishna,et al.  Combining hard and soft decoders for hypergraph product codes , 2020, Quantum.

[38]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[39]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[40]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[41]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[42]  L. Pryadko,et al.  Quantum Kronecker sum-product low-density parity-check codes with finite rate , 2012, 1212.6703.

[43]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[44]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[45]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[46]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[47]  James R. Wootton,et al.  High threshold error correction for the surface code. , 2012, Physical review letters.

[48]  N. Maskara,et al.  Advantages of versatile neural-network decoding for topological codes , 2018, Physical Review A.

[49]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[50]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[51]  Gilles Zémor,et al.  Quantum Expander Codes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[52]  Ching-Yi Lai,et al.  Decoding of Quantum Data-Syndrome Codes via Belief Propagation , 2021, 2021 IEEE International Symposium on Information Theory (ISIT).

[53]  Ching-Yi Lai,et al.  Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields , 2021, IEEE Transactions on Quantum Engineering.

[54]  Geoffrey E. Hinton,et al.  On the importance of initialization and momentum in deep learning , 2013, ICML.

[55]  Masayuki Ohzeki,et al.  Error threshold estimates for surface code with loss of qubits , 2012, 1202.2593.

[56]  David Poulin,et al.  Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes. , 2018, Physical review letters.

[57]  David Poulin,et al.  Hardness of Decoding Quantum Stabilizer Codes , 2013, IEEE Transactions on Information Theory.

[58]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[59]  Chung-Chin Lu,et al.  On the hardnesses of several quantum decoding problems , 2013, Quantum Information Processing.

[60]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[61]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[62]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[63]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[64]  R F Werner,et al.  Iterative optimization of quantum error correcting codes. , 2005, Physical review letters.

[65]  R. Raussendorf,et al.  Efficient decoding of topological color codes , 2011, 1111.0831.

[66]  David Burshtein,et al.  Deep Learning Methods for Improved Decoding of Linear Codes , 2017, IEEE Journal of Selected Topics in Signal Processing.

[67]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[68]  Mark Um,et al.  Single-qubit quantum memory exceeding ten-minute coherence time , 2017, 1701.04195.

[69]  Jehoshua Bruck,et al.  Neural networks, error-correcting codes, and polynomials over the binary n -cube , 1989, IEEE Trans. Inf. Theory.

[70]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[71]  Frederic T. Chong,et al.  QuRE: The Quantum Resource Estimator toolbox , 2013, 2013 IEEE 31st International Conference on Computer Design (ICCD).

[72]  Gottfried Lechner,et al.  Improved Sum-Min Decoding for Irregular LDPC Codes , 2006 .

[73]  Nicolas Delfosse,et al.  Decoding color codes by projection onto surface codes , 2013, ArXiv.

[74]  Ajay Dholakia,et al.  Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.

[75]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[76]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .