Programmable Metamaterials for Software-Defined Electromagnetic Control: Circuits, Systems, and Architectures

Metamaterials and their two-dimensional analogues, metasurfaces, have recently attracted enormous attention because of their powerful control over electromagnetic (EM) waves from microwave to visible range. Moreover, by introducing explicit control of its sub-wavelength unit cells, a metamaterial can become programmable. Programmable metamaterials may not only host multiple EM functionalities that can be chosen or combined through simple software directives, but also be provided with means to adapt to the environment or communicate with other metamaterials, thereby enabling a myriad of applications in sensing, imaging, or communications. The realization of such a software-driven cyber-physical vision comes, however, at the cost of significant hardware requirements. In this paper, recent progress in the field of programmable metasurfaces is reviewed, cutting across layers from the application down to the device and technology levels. The main aim is to present the current status, main benefits, and key challenges of this thriving research area with a tutorial spirit and from a hardware perspective.

[1]  Ekmel Ozbay,et al.  Experimental demonstration of a left-handed metamaterial operating at 100 GHz , 2006 .

[2]  Andrea Alù,et al.  Nanostructured graphene metasurface for tunable terahertz cloaking , 2013 .

[3]  Sergei A. Tretyakov,et al.  Intelligent Metasurfaces with Continuously Tunable Local Surface Impedance for Multiple Reconfigurable Functions , 2018, Physical Review Applied.

[4]  Tie Jun Cui,et al.  Spin-Controlled Multiple Pencil Beams and Vortex Beams with Different Polarizations Generated by Pancharatnam-Berry Coding Metasurfaces. , 2017, ACS applied materials & interfaces.

[5]  Hua Ma,et al.  Absorptive coding metasurface for further radar cross section reduction , 2018 .

[6]  Eduard Alarcón,et al.  Digital Metasurface Based on Graphene: An Application to Beam Steering in Terahertz Plasmonic Antennas , 2019, IEEE Transactions on Nanotechnology.

[7]  Kasra Rouhi,et al.  Multi-bit graphene-based bias-encoded metasurfaces for real-time terahertz wavefront shaping: From controllable orbital angular momentum generation toward arbitrary beam tailoring , 2019, Carbon.

[8]  Shi-Wei Qu,et al.  Terahertz Reflecting and Transmitting Metasurfaces , 2017, Proceedings of the IEEE.

[9]  Qiang Cheng,et al.  Terahertz Broadband Low‐Reflection Metasurface by Controlling Phase Distributions , 2015 .

[10]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[11]  Tie Jun Cui,et al.  Controllable and Programmable Nonreciprocity Based on Detachable Digital Coding Metasurface , 2019, Advanced Optical Materials.

[12]  M. Albooyeh,et al.  Flat Engineered Multichannel Reflectors , 2016, 1610.04780.

[13]  T. Cui,et al.  Addition Theorem for Digital Coding Metamaterials , 2018 .

[14]  Lei Zhang,et al.  Flexible controls of broadband electromagnetic wavefronts with a mechanically programmable metamaterial , 2019, Scientific Reports.

[15]  Qiang Cheng,et al.  A tunable metamaterial absorber using varactor diodes , 2013 .

[16]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[17]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[18]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[19]  T. Cui,et al.  Digital Metasurface with Phase Code and Reflection–Transmission Amplitude Code for Flexible Full‐Space Electromagnetic Manipulations , 2019, Advanced Optical Materials.

[20]  Ali Momeni,et al.  Asymmetric Spatial Power Dividers Using Phase–Amplitude Metasurfaces Driven by Huygens Principle , 2019, ACS Omega.

[21]  Harry A. Atwater,et al.  Electro-Optically Tunable Universal Metasurfaces , 2019, 1910.02069.

[22]  Ian F. Akyildiz,et al.  Terahertz band: Next frontier for wireless communications , 2014, Phys. Commun..

[23]  Andreas Pitsillides,et al.  Feedback Based Beam Steering for Intelligent Metasurfaces , 2019, 2019 2nd IEEE Middle East and North Africa COMMunications Conference (MENACOMM).

[24]  Maokun Li,et al.  A programmable metasurface with dynamic polarization, scattering and focusing control , 2016, Scientific Reports.

[25]  X. Cao,et al.  A New Coding Metasurface for Wideband RCS Reduction , 2018, Radioengineering.

[26]  Andreas F. Molisch,et al.  Experimental demonstration of 16-Gbit/s millimeter-wave communications link using thin metamaterial plates to generate data-carrying orbital-angular-momentum beams , 2015, 2015 IEEE International Conference on Communications (ICC).

[27]  Wen-Hui Cheng,et al.  Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces , 2019, Nature Communications.

[28]  Feng Cheng,et al.  Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi‐Supervised Learning Strategy , 2019, Advanced materials.

[29]  Phaedon Avouris,et al.  Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy , 2019, Nature Nanotechnology.

[30]  Fredrik Rusek,et al.  Beyond Massive MIMO: The Potential of Data Transmission With Large Intelligent Surfaces , 2017, IEEE Transactions on Signal Processing.

[31]  Maokun Li,et al.  Coding Programmable Metasurfaces Based on Deep Learning Techniques , 2019, 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting.

[32]  Lei Bao,et al.  2-bit amplitude-modulated coding metasurfaces based on indium tin oxide films , 2019, Journal of Applied Physics.

[33]  Ian F. Akyildiz,et al.  Exploration of Intercell Wireless Millimeter-Wave Communication in the Landscape of Intelligent Metasurfaces , 2019, IEEE Access.

[34]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[35]  Eduard Alarcón,et al.  Fault Tolerance in Programmable Metasurfaces: The Beam Steering Case , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[36]  Qiang Cheng,et al.  Space-time-coding digital metasurfaces , 2018, Nature Communications.

[37]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[38]  D. Neumaier,et al.  Integrating graphene into semiconductor fabrication lines , 2019, Nature Materials.

[39]  P. Kim,et al.  Photonic crystals for nano-light in moiré graphene superlattices , 2018, Science.

[40]  Qiang Cheng,et al.  Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. , 2017, ACS applied materials & interfaces.

[41]  Jining Li,et al.  Frequency-switchable VO2-based coding metasurfaces at the terahertz band , 2020 .

[42]  Tie Jun Cui,et al.  Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials , 2017 .

[43]  Omid Salehi-Abari,et al.  Cutting the Cord in Virtual Reality , 2016, HotNets.

[44]  Xiang Wan,et al.  Machine‐Learning Designs of Anisotropic Digital Coding Metasurfaces , 2018, Advanced Theory and Simulations.

[45]  D. Sievenpiper,et al.  Metasurfaces and their applications , 2018, Nanophotonics.

[46]  Li Ting Wu,et al.  Millimeter‐Wave Digital Coding Metasurfaces Based on Nematic Liquid Crystals , 2019, Advanced Theory and Simulations.

[47]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[48]  Phaedon Avouris,et al.  Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion and Focusing , 2017, 1712.04111.

[49]  Willie J Padilla,et al.  Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications , 2014 .

[50]  Tie Jun Cui,et al.  Large-scale transmission-type multifunctional anisotropic coding metasurfaces in millimeter-wave frequencies , 2017 .

[51]  Qiang Cheng,et al.  Breaking Reciprocity with Space‐Time‐Coding Digital Metasurfaces , 2019, Advanced materials.

[52]  Ian F. Akyildiz,et al.  A New Wireless Communication Paradigm through Software-Controlled Metasurfaces , 2018, IEEE Communications Magazine.

[53]  V. Shalaev,et al.  Time-Varying Metasurfaces and Lorentz Non-Reciprocity , 2015, 1507.04836.

[54]  Ke Wang,et al.  Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm , 2014, Scientific Reports.

[55]  Xiang Wan,et al.  Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging , 2016, Scientific Reports.

[56]  Eduard Alarcón,et al.  Computing and Communications for the Software-Defined Metamaterial Paradigm: A Context Analysis , 2018, IEEE Access.

[57]  Xiang Wan,et al.  Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams , 2016, Advanced science.

[58]  Harry A. Atwater,et al.  Tunable large resonant absorption in a midinfrared graphene Salisbury screen , 2014 .

[59]  Andrea Alù,et al.  Theory and Design of Multifunctional Space-Time Metasurfaces , 2019, 1910.11812.

[60]  Ian F. Akyildiz,et al.  Using any surface to realize a new paradigm for wireless communications , 2018, Commun. ACM.

[61]  Andrea Alù,et al.  Machine-learning reprogrammable metasurface imager , 2019, Nature Communications.

[62]  Andreas Pitsillides,et al.  Towards fault adaptive routing in metasurface controller networks , 2020, J. Syst. Archit..

[63]  Juan C. Garcia,et al.  Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. , 2017, Nano letters.

[64]  Shi Jin,et al.  Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI , 2018, IEEE Transactions on Vehicular Technology.

[65]  Ian F. Akyildiz,et al.  Combating the Distance Problem in the Millimeter Wave and Terahertz Frequency Bands , 2018, IEEE Communications Magazine.

[66]  Wei Xu,et al.  Multichannel direct transmissions of near-field information , 2019, Light: Science & Applications.

[67]  Eduard Alarcón,et al.  Programmable Metasurfaces: State of the Art and Prospects , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[68]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[69]  Qiang Cheng,et al.  Wireless Communications through a Simplified Architecture Based on Time‐Domain Digital Coding Metasurface , 2019, Advanced Materials Technologies.

[70]  W. Cai,et al.  A Generative Model for Inverse Design of Metamaterials , 2018, Nano letters.

[71]  Andrea Massa,et al.  Reconfigurable Electromagnetics Through Metamaterials—A Review , 2015, Proceedings of the IEEE.

[72]  A. Alú,et al.  Phase-Induced Frequency Conversion and Doppler Effect With Time-Modulated Metasurfaces , 2020, IEEE Transactions on Antennas and Propagation.

[73]  M. Schneider-Ramelow,et al.  High Frequency Substrate Technologies for the Realisation of Software Programmable Metasurfaces on PCB Hardware Platforms with Integrated Controller Nodes , 2019, 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC).

[74]  Sotiris Ioannidis,et al.  An Interpretable Neural Network for Configuring Programmable Wireless Environments , 2019, 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[75]  Shlomo Shamai,et al.  Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison , 2019, IEEE Open Journal of the Communications Society.

[76]  Enge Wang,et al.  Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper , 2019, Nature.

[77]  Jonathan A. Fan,et al.  Simulator-based training of generative neural networks for the inverse design of metasurfaces , 2019, Nanophotonics.

[78]  Ian F. Akyildiz,et al.  ABSense: Sensing Electromagnetic Waves on Metasurfaces via Ambient Compilation of Full Absorption , 2019, NANOCOM.

[79]  Eduardo Carrasco,et al.  Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array , 2014, Nanotechnology.

[80]  Tie Jun Cui,et al.  Transmission‐Reflection‐Integrated Multifunctional Coding Metasurface for Full‐Space Controls of Electromagnetic Waves , 2018, Advanced Functional Materials.

[81]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[82]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[83]  Ian F. Akyildiz,et al.  Realizing Wireless Communication Through Software-Defined HyperSurface Environments , 2018, 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM).

[84]  Andrea Alù,et al.  A Reconfigurable Active Huygens' Metalens. , 2017, Advanced materials.

[85]  G. Shvets,et al.  Experimental Demonstration of Phase Modulation and Motion Sensing Using Graphene-Integrated Metasurfaces. , 2015, Nano letters.

[86]  Houtong Chen,et al.  Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials , 2015 .

[87]  Shi-Wei Qu,et al.  Flat Terahertz Reflective Focusing Metasurface with Scanning Ability , 2017, Scientific Reports.

[88]  Andrea Alù,et al.  Ultrafast Electrically Tunable Polaritonic Metasurfaces , 2014 .

[89]  Seungwoo Lee,et al.  Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing , 2016, Scientific Reports.

[90]  Julius Georgiou,et al.  Asynchronous Circuits as an Enabler of Scalable and Programmable Metasurfaces , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[91]  Eduard Alarcón,et al.  Workload Characterization of Programmable Metasurfaces , 2019, NANOCOM.

[92]  Lei Zhou,et al.  Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces , 2015 .

[93]  J. Mosig,et al.  Graphene Reflectarray Metasurface for Terahertz Beam Steering and Phase Modulation , 2018, 1806.02202.

[94]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[95]  Matthias Wuttig,et al.  Polariton nanophotonics using phase-change materials , 2019, Nature Communications.

[96]  Yandong Gong,et al.  Multiband Switchable Terahertz Quarter-Wave Plates via Phase-Change Metasurfaces , 2016, IEEE Photonics Journal.

[97]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[98]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[99]  Tianjing Guo,et al.  Broadband polarizers based on graphene metasurfaces. , 2016, Optics letters.

[100]  Tie Jun Cui,et al.  Multitasking Shared Aperture Enabled with Multiband Digital Coding Metasurface , 2018, Advanced Optical Materials.

[101]  Mohamed-Slim Alouini,et al.  Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come , 2019, EURASIP Journal on Wireless Communications and Networking.

[102]  Shuo Liu,et al.  Information entropy of coding metasurface , 2016, Light: Science & Applications.

[103]  O. Muskens,et al.  VO2 Thermochromic Metamaterial-Based Smart Optical Solar Reflector , 2018 .

[104]  Li Zhang,et al.  Design of Phase Gradient Coding Metasurfaces for Broadband Wave Modulating , 2018, Scientific Reports.

[105]  A. Hajimiri,et al.  Transmitter Architectures Based on Near-Field Direct Antenna Modulation , 2008, IEEE Journal of Solid-State Circuits.

[106]  Qiang Cheng,et al.  A Reconfigurable Broadband Polarization Converter Based on an Active Metasurface , 2018, IEEE Transactions on Antennas and Propagation.

[107]  Zhangjie Luo,et al.  Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors , 2016 .

[108]  Chengkuo Lee,et al.  Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies , 2018, Nature Communications.

[109]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[110]  Young Hee Lee,et al.  Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation , 2018, Science.

[111]  Bo O. Zhu,et al.  Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial , 2017, Scientific Reports.

[112]  Qian Ma,et al.  Smart metasurface with self-adaptively reprogrammable functions , 2019, Light: Science & Applications.

[113]  Jong-Hyun Ahn,et al.  Wafer-scale synthesis and transfer of graphene films. , 2009, Nano letters.

[114]  Ertugrul Basar,et al.  Reconfigurable Intelligent Surface-Based Index Modulation: A New Beyond MIMO Paradigm for 6G , 2019, IEEE Transactions on Communications.

[115]  J. Hone,et al.  Fundamental limits to graphene plasmonics , 2018, Nature.

[116]  Daniel M Mittleman,et al.  Twenty years of terahertz imaging [Invited]. , 2018, Optics express.

[117]  Filip Lemic,et al.  Assessing the Reliability of Energy Harvesting Terahertz Nanonetworks for Controlling Software-Defined Metamaterials , 2019, NANOCOM.

[118]  Julius Georgiou,et al.  Chua Mem-Components for Adaptive RF Metamaterials , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[119]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[120]  Sergei A. Tretyakov,et al.  Toward Ultimate Control of Terahertz Wave Absorption in Graphene , 2017, IEEE Transactions on Antennas and Propagation.

[121]  J. Perruisseau-Carrier,et al.  Design of tunable biperiodic graphene metasurfaces , 2012, 1210.5611.

[122]  N.V. Kantartzis,et al.  Software-Defined Metasurface Paradigm: Concept, Challenges, Prospects , 2018, 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials).

[123]  Julius Georgiou,et al.  An Optically-Programmable Absorbing Metasurface , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[124]  T. Low,et al.  Complete Complex Amplitude Modulation with Electronically Tunable Graphene Plasmonic Metamolecules. , 2020, ACS nano.

[125]  Shuang Zhang,et al.  Electromagnetic reprogrammable coding-metasurface holograms , 2017, Nature Communications.

[126]  Yongmin Yang,et al.  Metamaterials-based enhanced energy harvesting: A review , 2014 .

[127]  Alessandro Toscano,et al.  Satellite Applications of Electromagnetic Cloaking , 2017, IEEE Transactions on Antennas and Propagation.

[128]  Carl W. Magnuson,et al.  The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper , 2013, Science.

[129]  Eduard Alarcón,et al.  Reprogrammable Graphene-based Metasurface Mirror with Adaptive Focal Point for THz Imaging , 2019, Scientific Reports.

[130]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[131]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[132]  Shi Jin,et al.  Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems , 2018, National science review.