Imaging the Thermal and Kinematic Sunyaev–Zel’dovich Effect Signals in a Sample of 10 Massive Galaxy Clusters: Constraints on Internal Velocity Structures and Bulk Velocities

We have imaged the Sunyaev–Zel’dovich (SZ) effect signals at 140 and 270 GHz toward 10 galaxy clusters with Bolocam and AzTEC/ASTE. We also used Planck data to constrain the signal at large angular scales, Herschel–SPIRE images to subtract the brightest galaxies that comprise the cosmic infrared background (CIB), Chandra imaging to map the electron temperature of the intra-cluster medium, and Hubble Space Telescope imaging to derive models of each galaxy cluster’s mass density. The galaxy clusters gravitationally lens the background CIB, which produced an on-average reduction in brightness toward the galaxy clusters’ centers after the brightest galaxies were subtracted. We corrected for this deficit, which was between 5% and 25% of the 270 GHz SZ effect signal within R2500. Using the SZ effect measurements, along with the X-ray constraint on , we measured each galaxy cluster’s average line of sight (LOS) velocity vz within R2500, with a median per-cluster uncertainty of ±700 km s−1. We found an ensemble-mean vz of 430 ± 210 km s−1, and an intrinsic cluster-to-cluster scatter of 470 ± 340 km s−1. We also obtained maps of vz over each galaxy cluster’s face with an angular resolution of 70″. All four galaxy clusters previously identified as having a merger oriented along the LOS showed an excess variance in these maps at a significance of ≃2–4σ, indicating an internal vz rms of ≳1000 km s−1. None of the six galaxy clusters previously identified as relaxed or plane-of-sky mergers showed any such excess variance.

[1]  J. Sayers,et al.  Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich Effects , 2018, Space Science Reviews.

[2]  D. Coe,et al.  RELICS: High-resolution Constraints on the Inner Mass Distribution of the z = 0.83 Merging Cluster RXJ0152.7-1357 from Strong Lensing , 2018, The Astrophysical Journal.

[3]  P. Mazzotta,et al.  Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample , 2018, Astronomy & Astrophysics.

[4]  E. Komatsu,et al.  A Cool Core Disturbed: Observational Evidence for the Coexistence of Subsonic Sloshing Gas and Stripped Shock-heated Gas around the Core of RX J1347.5–1145 , 2018, The Astrophysical Journal.

[5]  Philip Mauskopf,et al.  Optical design of the TolTEC millimeter-wave camera , 2018, Astronomical Telescopes + Instrumentation.

[6]  D. Coe,et al.  RELICS: Strong Lensing Analysis of the Galaxy Clusters Abell S295, Abell 697, MACS J0025.4-1222, and MACS J0159.8-0849 , 2018, The Astrophysical Journal.

[7]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[8]  C. A. Oxborrow,et al.  Planck intermediate results , 2017, Astronomy & Astrophysics.

[9]  Etienne Pointecouteau,et al.  Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich E ff ects A Millimetre / Submillimetre Probe of the Warm and Hot Universe , 2018 .

[10]  Matteo Guainazzi,et al.  Atmospheric gas dynamics in the Perseus cluster observed with Hitomi , 2017, 1711.00240.

[11]  I. Zhuravleva,et al.  What Do the Hitomi Observations Tell Us About the Turbulent Velocities in the Perseus Cluster? Probing the Velocity Field with Mock Observations , 2017, 1708.07206.

[12]  Michael D. Niemack,et al.  Optimizing measurements of cluster velocities and temperatures for CCAT-prime and future surveys , 2017, 1708.06365.

[13]  D. Nagai,et al.  Physical Origins of Gas Motions in Galaxy Cluster Cores: Interpreting Hitomi Observations of the Perseus Cluster , 2017, 1705.06280.

[14]  M. Donahue,et al.  Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745 , 2017, 1701.04096.

[15]  C. A. Oxborrow,et al.  Planck intermediate results. LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect , 2017 .

[16]  J. Aumont,et al.  Planck intermediate results LII. Planet flux densities , 2016, 1612.07151.

[17]  A. Scaife,et al.  Diffuse radio emission in MACS J0025.4$-$1222: the effect of a major merger on bulk separation of ICM components , 2016, 1611.01273.

[18]  S. Flender,et al.  Constraints on the Optical Depth of Galaxy Groups and Clusters , 2016, 1610.08029.

[19]  Matteo Guainazzi,et al.  IACHEC CROSS-CALIBRATION OF CHANDRA, NuSTAR, SWIFT, SUZAKU, XMM-NEWTON WITH 3C 273 ANDPKS 2155-304 , 2016, 1609.09032.

[20]  S. Randall,et al.  MERGER HYDRODYNAMICS OF THE LUMINOUS CLUSTER RX J1347.5–1145 , 2016, 1607.04674.

[21]  Edward J. Wollack,et al.  Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope , 2016, 1607.02139.

[22]  Matteo Guainazzi,et al.  The quiescent intracluster medium in the core of the Perseus cluster , 2016, Nature.

[23]  S. Maurogordato,et al.  Mapping the kinetic Sunyaev-Zel'dovich effect toward MACS J0717.5+3745 with NIKA , 2016, 1606.07721.

[24]  J. Merten,et al.  A COMPARISON AND JOINT ANALYSIS OF SUNYAEV–ZEL’DOVICH EFFECT MEASUREMENTS FROM PLANCK AND BOLOCAM FOR A SET OF 47 MASSIVE GALAXY CLUSTERS , 2016, 1605.03541.

[25]  J. Frieman,et al.  Detection of the kinematic Sunyaev-Zel'dovich effect with DES Year 1 and SPT , 2016, 1603.03904.

[26]  B. Crill,et al.  Comparison of absolute gain photometric calibration between Planck/HFI and Herschel/SPIRE at 545 and 857 GHz , 2015, 1509.01784.

[27]  C. A. Oxborrow,et al.  Planck intermediate results. XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect , 2015, 1504.03339.

[28]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[29]  Simon J. E. Radford,et al.  PECULIAR VELOCITY CONSTRAINTS FROM FIVE-BAND SZ EFFECT MEASUREMENTS TOWARD RX J1347.5−1145 WITH MUSIC AND BOLOCAM FROM THE CSO , 2015, 1509.02950.

[30]  P. Rosati,et al.  FRONTIER FIELDS CLUSTERS: CHANDRA AND JVLA VIEW OF THE PRE-MERGING CLUSTER MACS J0416.1-2403 , 2015, 1505.05560.

[31]  S. Allen,et al.  Cosmology and astrophysics from relaxed galaxy clusters – I. Sample selection , 2015, 1502.06020.

[32]  L. David,et al.  XMM-Newton and Chandra cross-calibration using HIFLUGCS galaxy clusters - Systematic temperature differences and cosmological impact , 2014, 1404.7130.

[33]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: THE LABOCA/ACT SURVEY OF CLUSTERS AT ALL REDSHIFTS , 2014, 1411.7998.

[34]  M. Meneghetti,et al.  HUBBLE SPACE TELESCOPE COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES , 2014, 1411.1414.

[35]  P. Ade,et al.  Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA ? , 2014, 1410.2808.

[36]  S. Borgani,et al.  TEMPERATURE STRUCTURE OF THE INTRA-CLUSTER MEDIUM FROM SPH AND AMR SIMULATIONS , 2014, 1406.4410.

[37]  L. Moustakas,et al.  GALAXY CLUSTER SCALING RELATIONS BETWEEN BOLOCAM SUNYAEV–ZEL’DOVICH EFFECT AND CHANDRA X-RAY MEASUREMENTS , 2014, 1406.2800.

[38]  O. Lahav,et al.  CLASH-X: A COMPARISON OF LENSING AND X-RAY TECHNIQUES FOR MEASURING THE MASS PROFILES OF GALAXY CLUSTERS , 2014, 1405.7876.

[39]  J. Bock,et al.  A MEASUREMENT OF THE KINETIC SUNYAEV–ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745 , 2013, 1312.3680.

[40]  S. Maddox,et al.  Isothermal dust models of Herschel-ATLAS galaxies , 2013, 1309.4102.

[41]  Camille Avestruz,et al.  PREDICTING MERGER-INDUCED GAS MOTIONS IN ΛCDM GALAXY CLUSTERS , 2013, 1307.2251.

[42]  M. Rossetti,et al.  Abell 2142 at large scales: An extreme case for sloshing? , 2013, 1305.2420.

[43]  J. Kneib,et al.  HerMES: A DEFICIT IN THE SURFACE BRIGHTNESS OF THE COSMIC INFRARED BACKGROUND DUE TO GALAXY CLUSTER GRAVITATIONAL LENSING , 2013, 1303.6725.

[44]  G. W. Pratt,et al.  Planck intermediate results - XIII. Constraints on peculiar velocities , 2013, 1303.5090.

[45]  Wei Cui,et al.  Reconstructing three-dimensional parameters of galaxy clusters via multifrequency Sunyaev–Zeldovich observations , 2012, 1211.7096.

[46]  D. Nagai,et al.  Sunyaev–Zeldovich signal processing and temperature–velocity moment method for individual clusters , 2012, 1211.3206.

[47]  Elena Pierpaoli,et al.  SUNYAEV–ZEL'DOVICH-MEASURED PRESSURE PROFILES FROM THE BOLOCAM X-RAY/SZ GALAXY CLUSTER SAMPLE , 2012, 1211.1632.

[48]  H. Hoekstra,et al.  JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES , 2012, 1210.3689.

[49]  J. Carlstrom,et al.  CARMA MEASUREMENTS OF THE SUNYAEV–ZEL'DOVICH EFFECT IN RX J1347.5−1145 , 2012, 1203.2175.

[50]  L. Moustakas,et al.  THE CONTRIBUTION OF RADIO GALAXY CONTAMINATION TO MEASUREMENTS OF THE SUNYAEV–ZEL'DOVICH DECREMENT IN MASSIVE GALAXY CLUSTERS AT 140 GHz WITH BOLOCAM , 2012, 1209.5129.

[51]  H. Nguyen,et al.  HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES , 2012, 1208.5049.

[52]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[53]  D. Nagai,et al.  A fast and accurate method for computing the Sunyaev–Zel'dovich signal of hot galaxy clusters , 2012, 1205.5778.

[54]  A. Cimatti,et al.  A Herschel view of the far-infrared properties of submillimetre galaxies , 2012, 1202.0761.

[55]  M. Rosenman,et al.  HIGH SPECTRAL RESOLUTION MEASUREMENT OF THE SUNYAEV–ZEL'DOVICH EFFECT NULL WITH Z-Spec , 2012, 1202.0029.

[56]  J. Stadel,et al.  MERGING GALAXY CLUSTERS: OFFSET BETWEEN THE SUNYAEV–ZEL'DOVICH EFFECT AND X-RAY PEAKS , 2012, 1201.1533.

[57]  Ryan E. Johnson,et al.  SLOSHING GAS IN THE CORE OF THE MOST LUMINOUS GALAXY CLUSTER RXJ1347.5-1145 , 2011, 1106.3489.

[58]  A. Liddle,et al.  Sunyaev-Zeldovich clusters in Millenium gas simualtions , 2011, 1112.3769.

[59]  A. Mann,et al.  X-ray–optical classification of cluster mergers and the evolution of the cluster merger fraction , 2011, 1111.2396.

[60]  Nicole G. Czakon,et al.  143 GHz BRIGHTNESS MEASUREMENTS OF URANUS, NEPTUNE, AND OTHER SECONDARY CALIBRATORS WITH BOLOCAM BETWEEN 2003 AND 2010 , 2011, 1110.3473.

[61]  I. P'erez-Fournon,et al.  HerMES: point source catalogues from deep Herschel-SPIRE observations★ , 2011, Monthly Notices of the Royal Astronomical Society.

[62]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[63]  S. R. Dicker,et al.  MUSTANG HIGH ANGULAR RESOLUTION SUNYAEV–ZEL'DOVICH EFFECT IMAGING OF SUBSTRUCTURE IN FOUR GALAXY CLUSTERS , 2010, 1010.5494.

[64]  Jonathan P. Williams,et al.  THE BOLOCAM GALACTIC PLANE SURVEY: SURVEY DESCRIPTION AND DATA REDUCTION , 2010, 1011.0691.

[65]  Elena Pierpaoli,et al.  CLUSTER MORPHOLOGIES AND MODEL-INDEPENDENT YSZ ESTIMATES FROM BOLOCAM SUNYAEV–ZEL'DOVICH IMAGES , 2010, 1010.1798.

[66]  M. Halpern,et al.  HerMES: SPIRE Science Demonstration Phase maps†‡ , 2010, 1010.0020.

[67]  H. Kawahara,et al.  IMPACT OF CHANDRA CALIBRATION UNCERTAINTIES ON GALAXY CLUSTER TEMPERATURES: APPLICATION TO THE HUBBLE CONSTANT , 2010, 1006.4486.

[68]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[69]  J. Kneib,et al.  The Herschel Lensing Survey (HLS): Overview , 2010, 1005.3820.

[70]  S. Bardelli,et al.  The very steep spectrum radio halo in Abell 697 , 2010, 1004.1515.

[71]  T. Schrabback,et al.  The impact of a major cluster merger on galaxy evolution in MACS J0025.4−1225 , 2010, 1003.2631.

[72]  N. Benı́tez,et al.  Strong-lensing analysis of a complete sample of 12 MACS clusters at z > 0.5: mass models and Einstein radii , 2010, 1002.0521.

[73]  J. Kneib,et al.  LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters at z= 0.2 , 2009, 0911.3302.

[74]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[75]  R. Sunyaev,et al.  Galaxy clusters as mirrors of the distant Universe - Implications of the blurring term for the kSZ and ISW effects , 2009, 0905.3001.

[76]  K. Irwin,et al.  IMPLICATIONS OF A HIGH ANGULAR RESOLUTION IMAGE OF THE SUNYAEV–ZEL'DOVICH EFFECT IN RXJ1347−1145 , 2009, 0910.5025.

[77]  Hawaii,et al.  The Observed Growth of Massive Galaxy Clusters II: X-ray Scaling Relations , 2009, 0909.3099.

[78]  H. Ebeling,et al.  AN X-RAY/OPTICAL STUDY OF THE COMPLEX DYNAMICS OF THE CORE OF THE MASSIVE INTERMEDIATE-REDSHIFT CLUSTER MACSJ0717.5+3745 , 2009, 0901.4783.

[79]  J. Tyson,et al.  DARK MATTER IN THE GALAXY CLUSTER CL J1226+3332 AT z = 0.89 , 2008, 0810.0709.

[80]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[81]  Martin White,et al.  Testing cosmological structure formation using redshift-space distortions , 2008, 0808.0003.

[82]  Edinburgh,et al.  Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222 , 2008, 0806.2320.

[83]  P. A. R. Ade,et al.  A SEARCH FOR COSMIC MICROWAVE BACKGROUND ANISOTROPIES ON ARCMINUTE SCALES WITH BOLOCAM , 2008, 0805.3151.

[84]  K. Souccar,et al.  The AzTEC mm-wavelength camera , 2008, 0801.2783.

[85]  R. Teyssier,et al.  The distant galaxy cluster CL0016+16 : X-ray analysis up to R200 , 2007, 0709.4560.

[86]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[87]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[88]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[89]  U. Birmingham,et al.  Deep XMM-Newton and Chandra Observations of Cl J1226.9+3332: A Detailed X-Ray Mass Analysis of a z = 0.89 Galaxy Cluster , 2006, astro-ph/0609690.

[90]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[91]  J. Sanders Contour binning: a new technique for spatially-resolved X-ray spectroscopy applied to Cassiopeia A , 2006, astro-ph/0606528.

[92]  R. Barrena,et al.  Internal dynamics of the massive cluster Abell 697: a multiwavelength analysis , 2006, astro-ph/0604599.

[93]  S. Ellis,et al.  XMM-Newton Observes Cl J0152.7–1357: A Massive Galaxy Cluster Forming at Merger Crossroads at z = 0.83 , 2005, astro-ph/0511466.

[94]  C. Jones,et al.  Deep XMM and Chandra observations of ClJ1226.9+3332: A detailed X-ray mass analysis of a z=0.89 galaxy cluster. , 2006 .

[95]  B. Draine submitted to The Astrophysical Journal On the Submillimeter Opacity of Protoplanetary Disks , 2005 .

[96]  P. Ade,et al.  The Bolocam Lockman Hole Millimeter-Wave Galaxy Survey: Galaxy Candidates and Number Counts , 2005, astro-ph/0503249.

[97]  Jack O. Burns,et al.  Accepted to ApJ Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE INTEGRATED SUNYAEV-ZELDOVICH EFFECT AS THE SUPERIOR METHOD FOR MEASURING THE MASS OF CLUSTERS OF GALAXIES , 2005 .

[98]  E. Serabyn,et al.  Measured telluric continuum-like opacity beyond 1 THz , 2005 .

[99]  T. Jeltema,et al.  The Evolution of Structure in X-Ray Clusters of Galaxies , 2005, astro-ph/0501360.

[100]  J. J. Bock,et al.  Measurements of Sunyaev-Zel’dovich Effect Scaling Relations for Clusters of Galaxies , 2004, astro-ph/0404391.

[101]  E. Komatsu,et al.  Exploring Cluster Physics with High-Resolution Sunyaev-Zel'dovich Effect Images and X-Ray Data , 2003, astro-ph/0311574.

[102]  Sandeep K. Patel,et al.  The Mass, Baryonic Fraction, and X-Ray Temperature of the Luminous, High-Redshift Cluster of Galaxies MS 0451.6–0305 , 2003, astro-ph/0308024.

[103]  J. J. Bock,et al.  Peculiar Velocity Limits from Measurements of the Spectrum of the Sunyaev-Zeldovich Effect in Six Clusters of Galaxies , 2003, astro-ph/0303510.

[104]  D. Nagai,et al.  Effect of Internal Flows on Sunyaev-Zeldovich Measurements of Cluster Peculiar Velocities , 2002, astro-ph/0208308.

[105]  Liverpool John Moores University,et al.  Aspherical galaxy clusters: Effects on cluster masses and gas mass fractions , 2002, astro-ph/0211383.

[106]  H. M. P. Couchman,et al.  Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky Survey Populations , 2001, astro-ph/0110246.

[107]  Eugene Serabyn,et al.  Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications , 2001 .

[108]  Aneta Siemiginowska,et al.  Sherpa: a mission-independent data analysis application , 2001, SPIE Optics + Photonics.

[109]  S. Allen,et al.  Chandra observations of the galaxy cluster Abell 1835 , 2001, astro-ph/0107311.

[110]  Eugene Serabyn,et al.  Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions , 2001 .

[111]  J. Jernigan,et al.  X-ray imaging spectroscopy of Abell 1835 , 2000, astro-ph/0010658.

[112]  Matthew Joseph Griffin,et al.  The near-millimeter brightness temperature spectra of Uranus and Neptune , 1993 .

[113]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[114]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[115]  V. Rubin,et al.  Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/ , 1980 .

[116]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[117]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .