Cascade six-level phase-mask achromatic coronagraph.

A cascade six-level phase-mask achromatic coronagraph is proposed. We show that, for the ideal aberration-free case, the average suppression of the central starlight in a three-stage six-level phase-mask achromatic coronagraph (SLPMC) can reach about 10⁻⁸ over a 40% bandwidth. We also do the optimization analysis of the working wavelength of each phase mask in the three-stage SLPMC. With optimization, the starlight can be stably suppressed to less than 10⁻⁸ (average about 10⁻¹⁰) over the whole 40% bandwidth.

[1]  P. Baudoz,et al.  Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes , 2011, 1104.2903.

[2]  D. Mawet,et al.  An image of an exoplanet separated by two diffraction beamwidths from a star , 2010, Nature.

[3]  D. Mawet,et al.  Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph , 2013, 1304.1180.

[4]  E. Cady,et al.  HIGH PERFORMANCE LYOT AND PIAA CORONAGRAPHY FOR ARBITRARILY SHAPED TELESCOPE APERTURES , 2013, 1305.6686.

[5]  A. Boccaletti,et al.  The Four‐Quadrant Phase Mask Coronagraph. IV. First Light at the Very Large Telescope , 2004 .

[6]  Frantz Martinache,et al.  Laboratory demonstration of Phase Induced Amplitude Apodization (PIAA) coronagraph with better than 10-9 contrast , 2013, Optics & Photonics - Optical Engineering + Applications.

[7]  Naoshi Baba,et al.  ACHROMATIC EIGHT-OCTANT PHASE-MASK CORONAGRAPH USING PHOTONIC CRYSTAL , 2010 .

[8]  Pierre Baudoz,et al.  The Four Quadrant Phase Mask Coronagraph and its avatars , 2007 .

[9]  R. Soummer,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. III. QUASI-ACHROMATIC SOLUTIONS , 2011 .

[10]  R. Soummer,et al.  HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS , 2010 .

[11]  Xi Zhang,et al.  A high-contrast coronagraph for direct imaging of Earth-like exoplanets: design and test , 2015 .

[12]  D. Mawet,et al.  Subwavelength surface-relief gratings for stellar coronagraphy. , 2005, Applied optics.

[13]  Alistair Glasse,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs , 2015 .

[14]  Pierre Baudoz,et al.  The four-quadrant phase-mask coronagraph : white light laboratory results with an achromatic device , 2006 .

[15]  R. Soummer,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. IV. REDUCED INNER WORKING ANGLE AND INCREASED ROBUSTNESS TO LOW-ORDER ABERRATIONS , 2014, 1412.2751.

[16]  Olivier Guyon,et al.  The Pupil‐swapping Coronagraph , 2006 .

[17]  R. Soummer,et al.  Characterizing the Atmospheres of the HR8799 Planets with HST/WFC3 , 2015, 1508.02395.

[18]  George H. Rieke,et al.  Simulations of JWST MIRI 4QPM coronagraphs operations and performances , 2014, Astronomical Telescopes and Instrumentation.

[19]  Mitsuo Takeda,et al.  Achromatic deep nulling with a three-dimensional Sagnac interferometer. , 2009, Optics letters.

[20]  M. Tamura,et al.  Design and laboratory demonstration of an achromatic vector vortex coronagraph. , 2013, Optics express.

[21]  Anthony Boccaletti,et al.  Near-Infrared Detection and Characterization of the Exoplanet HD 95086 b with the Gemini Planet Imager , 2014, 1404.4635.

[22]  Minning Zhu,et al.  Wide-band six-region phase mask coronagraph. , 2014, Optics express.