Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application

We have developed a simple and scalable approach for fabricating sub-wavelength structures (SWS) on silicon nitride by means of self-assembled nickel nanoparticle masks and inductively coupled plasma (ICP) ion etching. Silicon nitride SWS surfaces with diameter of 160–200 nm and a height of 140–150 nm were obtained. A low reflectivity below 1% was observed over wavelength from 590 to 680 nm. Using the measured reflectivity data in PC1D, the solar cell characteristics has been compared for single layer anti-reflection (SLAR) coatings and SWS and a 0.8% improvement in efficiency has been seen.

[1]  Drew A. Pommet,et al.  Optimal design for antireflective tapered two-dimensional subwavelength grating structures , 1995 .

[2]  Y. Inomata,et al.  Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method , 1997 .

[3]  Yoshiaki Kanamori,et al.  Antireflection sub-wavelength gratings fabricated by spin-coating replication , 2005 .

[4]  Junsin Yi,et al.  Double-layer anti-reflection coating using MgF2 and CeO2 films on a crystalline silicon substrate , 2000 .

[5]  O. Heavens Thin-film Optical Filters , 1986 .

[6]  Martin A. Green,et al.  Twenty‐four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss , 1995 .

[7]  G. Michael Morris,et al.  Antireflection behavior of silicon subwavelength periodic structures for visible light , 1997 .

[8]  H. Dekkers,et al.  Silicon surface texturing by reactive ion etching , 2000 .

[9]  A. Leo,et al.  Texturing industrial multicrystalline silicon solar cells , 2004 .

[10]  K. Hane,et al.  Broadband antireflection gratings fabricated upon silicon substrates. , 1999, Optics letters.

[11]  Orlin D. Velev,et al.  Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells , 2007 .

[12]  J. Gilman,et al.  Nanotechnology , 2001 .

[13]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[14]  Claude Lévy-Clément,et al.  Design of porous silicon antireflection coatings for silicon solar cells , 2000 .

[15]  Min-Yi Shih,et al.  Strong broadband optical absorption in silicon nanowire films , 2007 .

[16]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[17]  V. Baier,et al.  High temperature resistant antireflective moth-eye structures for infrared radiation sensors , 2005 .

[18]  Yoshiaki Kanamori,et al.  Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks , 2006 .

[19]  Alexander Zaslavsky,et al.  Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures , 2002 .

[20]  Martin A. Green,et al.  High-efficiency silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[21]  Michael Jay Minot,et al.  Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μ , 1976 .