Barycentric Dynamical Reference System

The barycentric dynamical reference system (BDRS) is a space–time reference system whose origin agrees with the solar system barycenter. Note that the BDRS is not yet an IAU-adopted name, in contrast to BCRS and GCRS; often, it is called conventional dynamical realization of the ICRS, a name that however lacks the reference to the barycenter.

[1]  Slava G. Turyshev,et al.  Progress in lunar laser ranging tests of relativistic gravity. , 2004 .

[2]  Barry M. Lasker,et al.  The guide star catalog , 1987 .

[3]  A. Fienga,et al.  LLR residuals of INPOP10A and constraints on Post-Newtonian parameters , 2011 .

[4]  P. Bretagnon,et al.  Analytical Planetary solution VSOP2000 , 2001 .

[5]  P. K. Seidelmann,et al.  The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement , 2003, astro-ph/0303376.

[6]  A. Miroshnichenko New possible binaries among B[e] stars , 1995 .

[7]  E. M. Standish,et al.  DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. , 1983 .

[8]  David G. Monet,et al.  Upgrades to the Flagstaff Astrometric Scanning Transit Telescope: A Fully Automated Telescope for Astrometry , 2003 .

[9]  J. I. B. Camargo,et al.  Astrometry of Pluto and Saturn with the CCD meridian instruments of Bordeaux and Valinhos , 2002 .

[10]  Caltech,et al.  SPITZER INFRARED SPECTROMETER 16 μm OBSERVATIONS OF THE GOODS FIELDS , 2010, 1010.1797.

[11]  P. Shelus Lunar Laser Ranging: Glorious Past And A Bright Future , 2001 .

[12]  Slava G. Turyshev,et al.  Lunar Laser Ranging Contributions to Relativity and Geodesy , 2008 .

[13]  E. M. Standish,et al.  Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the Astronomical Unit , 2009 .

[14]  J. Souchay,et al.  Corrections and new developments in rigid earth nutation theory. III. Final tables ``REN-2000 , 1999 .

[15]  A. Klemola,et al.  Astrometric observations of outer planets and minor planets 1984-1985 , 1986 .

[16]  A. Fienga,et al.  INPOP06: a new numerical planetary ephemeris , 2008 .

[17]  R. Jurgens Earth-Based Radar Studies of Planetary Surfaces And Atmospheres , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[18]  P. Bretagnon Amelioration des theories planetaires analytiques , 1984 .

[19]  Radar measurements at 70 CM of Venus and Mercury , 1967 .

[20]  Kenneth Nordtvedt,et al.  Testing relativity with laser ranging to the moon , 1968 .

[21]  Cesare Barbieri,et al.  Accurate positions of the planet Pluto from 1974 to 1978 , 1979 .

[22]  J. Laskar,et al.  Planetary and Lunar ephemerides, INPOP10A , 2010 .

[23]  Cesare Barbieri,et al.  Accurate Positions of the Planet Pluto from 1979 to 1987 , 1988 .

[24]  K. Nordtvedt The Relativistic Orbit Observables in Lunar Laser Ranging , 1995 .

[25]  Cesare Barbieri,et al.  Astrometry of Pluto from 1969 to 1989 , 1994 .

[26]  V. E. Panfilov,et al.  EPM Ephemerides of Planets and the Moon of IAA RAS: their model, accuracy, availability , 2011 .

[27]  Jürgen Müller,et al.  Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant , 2010 .

[28]  H. Ruder,et al.  Testing Einstein's Theory of Gravity by Analyzing Lunar Laser Ranging Data , 1991 .

[29]  J. Laskar,et al.  Numerical expressions for precession formulae and mean elements for the Moon and the planets. , 1994 .

[30]  C. D. Hoyle,et al.  Laser ranging to the lost Lunokhod 1 reflector , 2010, 1009.5720.

[31]  A. Fienga,et al.  The INPOP10a planetary ephemeris and its applications in fundamental physics , 2011 .

[32]  Z. Bay Reflection of microwaves from the Moon , 1947 .

[33]  National Radio Astronomy Observatory,et al.  VERY LONG BASELINE ARRAY ASTROMETRIC OBSERVATIONS OF THE CASSINI SPACECRAFT AT SATURN , 2010, 1012.0264.

[34]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[35]  Vincenzo Zappala,et al.  Astrometric positions of Pluto from 1980 to 1982 , 1983 .

[36]  A. Fienga,et al.  La2010: a new orbital solution for the long-term motion of the Earth , 2011, 1103.1084.

[37]  P. Bretagnon,et al.  Planetary Theories in rectangular and spherical variables: VSOP87 solution. , 1988 .

[38]  V. V. Vityazev,et al.  Pluto: An analysis of photographic positions obtained with the pulkovo normal astrograph in 1930-1992 , 1995 .

[39]  Slava G. Turyshev,et al.  LUNAR LASER RANGING TESTS OF THE EQUIVALENCE PRINCIPLE WITH THE EARTH AND MOON , 2005 .

[40]  Dah-Ning Yuan,et al.  A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris , 2006 .

[41]  E. Pitjeva High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants , 2005 .

[42]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[43]  M. Soffel Relativity in astrometry, Celestial mechanics and geodesy , 1989 .

[44]  Kenneth Nordtvedt,et al.  Lunar laser ranging and the equivalence principle signal , 1998 .

[45]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[46]  Radar measurements of Mercury’s north pole at 70 cm wavelength , 2010 .

[47]  Christopher W. Stubbs,et al.  Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) , 2004 .

[48]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[49]  E. Pitjeva RECENT MODELS OF THE PLANET MOTIONS AND FUNDAMENTAL CONSTANTS DETERMINED FROM POSITION OBSERVATIONS OF PLANETS AND SPACECRAFT , 2008 .

[50]  E. Pitjeva,et al.  The motion of major planets from observations 1769–1988 and some astronomical constants , 1993 .

[51]  E. Pitjeva Modern Numerical Ephemerides of Planets and the Importance of Ranging Observations for Their Creation , 2001 .

[52]  A. Fienga,et al.  INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions , 2009, 0906.2860.

[53]  E. C. Hubbard,et al.  New orbit for Pluto and analysis of differential corrections , 1967 .

[54]  E. Pitjeva Influence of trans-neptunian objects on motion of major planets and limitation on the total TNO mass from planet and spacecraft ranging , 2009, Proceedings of the International Astronomical Union.

[55]  X. Newhall,et al.  Relativity parameters determined from lunar laser ranging. , 1996, Physical review. D, Particles and fields.

[56]  Chandler,et al.  Measurement of the de Sitter precession of the Moon: A relativistic three-body effect. , 1988, Physical review letters.

[57]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[58]  Liliane Biskupek,et al.  Variations of the gravitational constant from lunar laser ranging data , 2007 .

[59]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[60]  W. Folkner Uncertainties in the JPL planetary ephemeris , 2011 .